A note on vertex-disjoint cycles

被引:9
|
作者
Verstraëte, J [1 ]
机构
[1] Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
来源
COMBINATORICS PROBABILITY & COMPUTING | 2002年 / 11卷 / 01期
关键词
D O I
10.1017/S0963548301004904
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Haggkvist and Scott asked whether one can find a quadratic function q(k) such that, if G is a graph of minimum degree at least q(k), then G contains vertex-disjoint cycles of k consecutive even lengths. In this paper, it is shown that if G is a graph of average degree at least k(2) + 19k + 10 with sufficiently many vertices, then G contains vertex-disjoint cycles of k consecutive even lengths, answering the above question in the affirmative. The coefficient of k(2) cannot be decreased and, in this sense, this result is best possible.
引用
收藏
页码:97 / 102
页数:6
相关论文
共 50 条
  • [1] Graphs with many Vertex-Disjoint Cycles
    Rautenbach, Dieter
    Regen, Friedrich
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2012, 14 (02): : 75 - 82
  • [2] Independence number and vertex-disjoint cycles
    Egawa, Yoshimi
    Enomoto, Hikoe
    Jendrol, Stanislav
    Ota, Katsuhiro
    Schiermeyer, Ingo
    [J]. DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1493 - 1498
  • [3] Vertex-disjoint cycles of the same length
    Egawa, Y
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 66 (02) : 168 - 200
  • [4] A CONJECTURE OF VERSTRAETE ON VERTEX-DISJOINT CYCLES
    Gao, Jun
    Ma, Jie
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (02) : 1290 - 1301
  • [5] Vertex-disjoint cycles in regular tournaments
    Lichiardopol, Nicolas
    [J]. DISCRETE MATHEMATICS, 2012, 312 (12-13) : 1927 - 1930
  • [6] Vertex-disjoint chorded cycles in a graph
    Qiao, Shengning
    Zhang, Shenggui
    [J]. OPERATIONS RESEARCH LETTERS, 2010, 38 (06) : 564 - 566
  • [7] Vertex-disjoint cycles in bipartite tournaments
    Bai, Yandong
    Li, Binlong
    Li, Hao
    [J]. DISCRETE MATHEMATICS, 2015, 338 (08) : 1307 - 1309
  • [8] Vertex-disjoint cycles of the same length
    Verstraëte, J
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (01) : 45 - 52
  • [9] Two vertex-disjoint cycles in a graph
    Wang, H
    [J]. GRAPHS AND COMBINATORICS, 1995, 11 (04) : 389 - 396
  • [10] Vertex-disjoint cycles in local tournaments
    Li, Ruijuan
    Liang, Juanjuan
    Zhang, Xinhong
    Guo, Yubao
    [J]. DISCRETE MATHEMATICS, 2020, 343 (12)