Extremal Graphs for the Union of Two Vertex-Disjoint Cliques

被引:0
|
作者
Zhidan Luo [1 ]
机构
[1] Hainan University,School of Mathematics and Statistics
关键词
Turán number; Cliques; Extremal graphs; 05C35; 11N30;
D O I
10.1007/s00373-025-02914-9
中图分类号
学科分类号
摘要
A graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} contains no copy of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} as a subgraph. The Turán number of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}, ex(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, H)$$\end{document}, is the maximum number of edges over all H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free graphs on n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices. Let EX(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{EX}(n, H)$$\end{document} be the collection of all H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free graphs on n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices with ex(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, H)$$\end{document} edges. Recently, Chen et al. determined the value of ex(n,2Kp+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, 2K_{p+ 1})$$\end{document}. Zhang and also Zhang and Yin determined the value of ex(n,3Kp+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, 3K_{p+ 1})$$\end{document}. Hu determined the value of ex(n,Kp+1∪Kq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, K_{p+ 1}\cup K_{q})$$\end{document} for all p≥q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge q$$\end{document}. In this paper, we characterize EX(n,Kp+1∪Kq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{EX}(n, K_{p+ 1}\cup K_{q})$$\end{document} for all p≥q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge q$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Extremal Graphs for Two Vertex-Disjoint Copies of a Clique
    Chen, Wanfang
    Lu, Changhong
    Yuan, Long-Tu
    GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [2] Extremal Graphs for Two Vertex-Disjoint Copies of a Clique
    Wanfang Chen
    Changhong Lu
    Long-Tu Yuan
    Graphs and Combinatorics, 2022, 38
  • [3] Turan numbers of vertex-disjoint cliques in r-partite graphs
    De Silva, Jessica
    Heysse, Kristin
    Kapilow, Adam
    Schenfisch, Anna
    Young, Michael
    DISCRETE MATHEMATICS, 2018, 341 (02) : 492 - 496
  • [4] Turán number of two vertex-disjoint copies of cliques
    Hu, Caiyun
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, : 759 - 769
  • [5] Vertex-disjoint paths in graphs
    Egawa, Y
    Ota, K
    ARS COMBINATORIA, 2001, 61 : 23 - 31
  • [6] Extremal spectral results of planar graphs without vertex-disjoint cycles
    Fang, Longfei
    Lin, Huiqiu
    Shi, Yongtang
    JOURNAL OF GRAPH THEORY, 2024, 106 (03) : 496 - 524
  • [7] Vertex-disjoint quadrilaterals in graphs
    Wang, H
    DISCRETE MATHEMATICS, 2004, 288 (1-3) : 149 - 166
  • [8] Vertex-disjoint claws in graphs
    Egawa, Y
    Ota, K
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 225 - 246
  • [9] Biased graphs with no two vertex-disjoint unbalanced cycles
    Chen, Rong
    Pivotto, Irene
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 130 : 207 - 245
  • [10] Graphs with many Vertex-Disjoint Cycles
    Rautenbach, Dieter
    Regen, Friedrich
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2012, 14 (02): : 75 - 82