Extremal spectral results of planar graphs without vertex-disjoint cycles

被引:0
|
作者
Fang, Longfei [1 ,2 ]
Lin, Huiqiu [1 ,5 ]
Shi, Yongtang [3 ,4 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai, Peoples R China
[2] Chuzhou Univ, Sch Math & Finance, Chuzhou, Anhui, Peoples R China
[3] Nankai Univ, Ctr Combinator, Tianjin, Peoples R China
[4] Nankai Univ, LPMC, Tianjin, Peoples R China
[5] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
planar graph; quadrilateral; spectral radius; Turan number; vertex-disjoint cycles; CONJECTURE; RADIUS;
D O I
10.1002/jgt.23084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a planar graph family F ${\rm{ {\mathcal F} }}$, let exP(n,F) $e{x}_{{\mathscr{P}}}(n,{\mathscr{F}})$ and spexP(n,F) $spe{x}_{{\mathscr{P}}}(n,{\mathscr{F}})$ be the maximum size and maximum spectral radius over all n $n$-vertex F ${\rm{ {\mathcal F} }}$-free planar graphs, respectively. Let tCl $t{C}_{\ell }$ be the disjoint union of t $t$ copies of l $\ell $-cycles, and tC $t{\mathscr{C}}$ be the family of t $t$ vertex-disjoint cycles without length restriction. Tait and Tobin determined that K2+Pn-2 ${K}_{2}+{P}_{n-2}$ is the extremal spectral graph among all planar graphs with sufficiently large order n $n$, which implies the extremal graphs of both spexP(n,tCl) $spe{x}_{{\mathscr{P}}}(n,t{C}_{\ell })$ and spexP(n,tC) $spe{x}_{{\mathscr{P}}}(n,t{\mathscr{C}})$ for t >= 3 $t\ge 3$ are K2+Pn-2 ${K}_{2}+{P}_{n-2}$. In this paper, we first determine spexP(n,tCl) $spe{x}_{{\mathscr{P}}}(n,t{C}_{\ell })$ and spexP(n,tC) $spe{x}_{{\mathscr{P}}}(n,t{\mathscr{C}})$ and characterize the unique extremal graph for 1 <= t <= 2 $1\le t\le 2$, l >= 3 $\ell \ge 3$ and sufficiently large n $n$. Second, we obtain the exact values of exP(n,2C4) $e{x}_{{\mathscr{P}}}(n,2{C}_{4})$ and exP(n,2C) $e{x}_{{\mathscr{P}}}(n,2{\mathscr{C}})$, which solve a conjecture of Li for n >= 2661 $n\ge 2661$.
引用
收藏
页码:496 / 524
页数:29
相关论文
共 50 条
  • [1] Graphs with many Vertex-Disjoint Cycles
    Rautenbach, Dieter
    Regen, Friedrich
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2012, 14 (02): : 75 - 82
  • [2] Graphs without two vertex-disjoint S-cycles
    Kang, Minjeong
    Kwon, O-joung
    Lee, Myounghwan
    [J]. DISCRETE MATHEMATICS, 2020, 343 (10)
  • [3] Extremal Graphs for Two Vertex-Disjoint Copies of a Clique
    Chen, Wanfang
    Lu, Changhong
    Yuan, Long-Tu
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [4] Extremal Graphs for Two Vertex-Disjoint Copies of a Clique
    Wanfang Chen
    Changhong Lu
    Long-Tu Yuan
    [J]. Graphs and Combinatorics, 2022, 38
  • [5] The vertex-disjoint Menger problem in planar graphs
    RipphausenLipa, H
    Wagner, D
    Weihe, K
    [J]. SIAM JOURNAL ON COMPUTING, 1997, 26 (02) : 331 - 349
  • [6] Vertex-disjoint double chorded cycles in bipartite graphs
    Gao, Yunshu
    Lin, Xiaoyao
    Wang, Hong
    [J]. DISCRETE MATHEMATICS, 2019, 342 (09) : 2482 - 2492
  • [7] Biased graphs with no two vertex-disjoint unbalanced cycles
    Chen, Rong
    Pivotto, Irene
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 130 : 207 - 245
  • [8] On independent triples and vertex-disjoint chorded cycles in graphs
    Gould, Ronald J.
    Hirohata, Kazuhide
    Rorabaugh, Ariel Keller
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 77 (PT 3): : 355 - 372
  • [9] A note on vertex-disjoint cycles
    Verstraëte, J
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (01): : 97 - 102
  • [10] Spanning Cyclic Subdivisions of Vertex-Disjoint Cycles and Chorded Cycles in Graphs
    Qiao, Shengning
    Zhang, Shenggui
    [J]. GRAPHS AND COMBINATORICS, 2012, 28 (02) : 277 - 285