Extremal spectral results of planar graphs without vertex-disjoint cycles

被引:0
|
作者
Fang, Longfei [1 ,2 ]
Lin, Huiqiu [1 ,5 ]
Shi, Yongtang [3 ,4 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai, Peoples R China
[2] Chuzhou Univ, Sch Math & Finance, Chuzhou, Anhui, Peoples R China
[3] Nankai Univ, Ctr Combinator, Tianjin, Peoples R China
[4] Nankai Univ, LPMC, Tianjin, Peoples R China
[5] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
planar graph; quadrilateral; spectral radius; Turan number; vertex-disjoint cycles; CONJECTURE; RADIUS;
D O I
10.1002/jgt.23084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a planar graph family F ${\rm{ {\mathcal F} }}$, let exP(n,F) $e{x}_{{\mathscr{P}}}(n,{\mathscr{F}})$ and spexP(n,F) $spe{x}_{{\mathscr{P}}}(n,{\mathscr{F}})$ be the maximum size and maximum spectral radius over all n $n$-vertex F ${\rm{ {\mathcal F} }}$-free planar graphs, respectively. Let tCl $t{C}_{\ell }$ be the disjoint union of t $t$ copies of l $\ell $-cycles, and tC $t{\mathscr{C}}$ be the family of t $t$ vertex-disjoint cycles without length restriction. Tait and Tobin determined that K2+Pn-2 ${K}_{2}+{P}_{n-2}$ is the extremal spectral graph among all planar graphs with sufficiently large order n $n$, which implies the extremal graphs of both spexP(n,tCl) $spe{x}_{{\mathscr{P}}}(n,t{C}_{\ell })$ and spexP(n,tC) $spe{x}_{{\mathscr{P}}}(n,t{\mathscr{C}})$ for t >= 3 $t\ge 3$ are K2+Pn-2 ${K}_{2}+{P}_{n-2}$. In this paper, we first determine spexP(n,tCl) $spe{x}_{{\mathscr{P}}}(n,t{C}_{\ell })$ and spexP(n,tC) $spe{x}_{{\mathscr{P}}}(n,t{\mathscr{C}})$ and characterize the unique extremal graph for 1 <= t <= 2 $1\le t\le 2$, l >= 3 $\ell \ge 3$ and sufficiently large n $n$. Second, we obtain the exact values of exP(n,2C4) $e{x}_{{\mathscr{P}}}(n,2{C}_{4})$ and exP(n,2C) $e{x}_{{\mathscr{P}}}(n,2{\mathscr{C}})$, which solve a conjecture of Li for n >= 2661 $n\ge 2661$.
引用
收藏
页码:496 / 524
页数:29
相关论文
共 50 条
  • [21] Vertex-disjoint chorded cycles in a graph
    Qiao, Shengning
    Zhang, Shenggui
    [J]. OPERATIONS RESEARCH LETTERS, 2010, 38 (06) : 564 - 566
  • [22] Vertex-disjoint cycles in bipartite tournaments
    Bai, Yandong
    Li, Binlong
    Li, Hao
    [J]. DISCRETE MATHEMATICS, 2015, 338 (08) : 1307 - 1309
  • [23] Two vertex-disjoint cycles in a graph
    Wang, H
    [J]. GRAPHS AND COMBINATORICS, 1995, 11 (04) : 389 - 396
  • [24] Vertex-disjoint cycles in regular tournaments
    Lichiardopol, Nicolas
    [J]. DISCRETE MATHEMATICS, 2012, 312 (12-13) : 1927 - 1930
  • [25] Minimum degree conditions for vertex-disjoint even cycles in large graphs
    Chiba, Shuya
    Fujita, Shinya
    Kawarabayashi, Ken-ichi
    Sakuma, Tadashi
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2014, 54 : 105 - 120
  • [26] Vertex-disjoint cycles in local tournaments
    Li, Ruijuan
    Liang, Juanjuan
    Zhang, Xinhong
    Guo, Yubao
    [J]. DISCRETE MATHEMATICS, 2020, 343 (12)
  • [27] ON THE NUMBER OF VERTEX-DISJOINT CYCLES IN DIGRAPHS
    Bai, Yandong
    Manoussakis, Yannis
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (04) : 2444 - 2451
  • [28] On vertex-disjoint paths in regular graphs
    Han, Jie
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [29] Shortest vertex-disjoint two-face paths in planar graphs
    de Verdiere, Eric Colin
    Schrijver, Alexander
    [J]. STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 2008, : 181 - +
  • [30] Vertex-disjoint paths in transposition graphs
    Fujita, Satoshi
    [J]. Proceedings of the 18th IASTED International Conference on Parallel and Distributed Computing and Systems, 2006, : 490 - 494