Fourier Multipliers and Pseudo-differential Operators on Fock-Sobolev SpacesOperators on Fock-Sobolev SpacesS. Thangavelu

被引:0
|
作者
Sundaram Thangavelu [1 ]
机构
[1] Indian Institute of Science,Department of Mathematics
关键词
Fock space; Bargmann transform; Fourier multipliers; Pseudo-differential operators; Primary 30H20; 42A38; Secondary 42B15; 44A15;
D O I
10.1007/s00020-024-02789-0
中图分类号
学科分类号
摘要
Any bounded linear operator T on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^2({\mathbb {R}}^n) $$\end{document} gives rise to the operator S=B∘T∘B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S= B \circ T \circ B^*$$\end{document} on the Fock space F(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {F}({{\mathbb {C}}}^n) $$\end{document} where B is the Bargmann transform. In this article we identify those S which correspond to Fourier multipliers and pseudo-differential operators on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^2({\mathbb {R}}^n)$$\end{document} and study their boundedness on the Fock-Sobolev spaces Fs,2(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {F}^{s,2}({{\mathbb {C}}}^n)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Gleason’s problem on Fock-Sobolev spaces
    Jineng Dai
    Jingyun Zhou
    Acta Mathematica Scientia, 2021, 41 : 337 - 348
  • [32] Carleson Type Measures for Fock-Sobolev Spaces
    Mengestie, Tesfa
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (06) : 1225 - 1256
  • [33] GLEASON'S PROBLEM ON FOCK-SOBOLEV SPACES
    戴济能
    周静云
    Acta Mathematica Scientia, 2021, 41 (01) : 337 - 348
  • [34] Positive Toeplitz Operators Between Different Fock-Sobolev Type Spaces
    Chen, Jianjun
    Wang, Xiaofeng
    Xia, Jin
    Xu, Guangxia
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (02)
  • [35] Positive Toeplitz Operators Between Different Fock-Sobolev Type Spaces
    Jianjun Chen
    Xiaofeng Wang
    Jin Xia
    Guangxia Xu
    Complex Analysis and Operator Theory, 2022, 16
  • [36] Sarason's Conjecture of Toeplitz Operators on Fock-Sobolev Type Spaces
    Wang, Xiaofeng
    Chen, Jianjun
    Xia, Jin
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [37] On the Spectrum of Volterra-Type Integral Operators on Fock-Sobolev Spaces
    Mengestie, Tesfa
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (06) : 1451 - 1461
  • [38] Volterra and Composition Inner Derivations on the Fock-Sobolev Spaces
    Yang, Xueyan
    He, Hua
    Tong, Cezhong
    Arroussi, Hicham
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (05)
  • [39] Banach space structure of weighted Fock-Sobolev spaces
    He, Li
    Cao, Guangfu
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (03) : 693 - 703
  • [40] Banach space structure of weighted Fock-Sobolev spaces
    Li He
    Guangfu Cao
    Frontiers of Mathematics in China, 2016, 11 : 693 - 703