Fourier Multipliers and Pseudo-differential Operators on Fock-Sobolev SpacesOperators on Fock-Sobolev SpacesS. Thangavelu

被引:0
|
作者
Sundaram Thangavelu [1 ]
机构
[1] Indian Institute of Science,Department of Mathematics
关键词
Fock space; Bargmann transform; Fourier multipliers; Pseudo-differential operators; Primary 30H20; 42A38; Secondary 42B15; 44A15;
D O I
10.1007/s00020-024-02789-0
中图分类号
学科分类号
摘要
Any bounded linear operator T on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^2({\mathbb {R}}^n) $$\end{document} gives rise to the operator S=B∘T∘B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S= B \circ T \circ B^*$$\end{document} on the Fock space F(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {F}({{\mathbb {C}}}^n) $$\end{document} where B is the Bargmann transform. In this article we identify those S which correspond to Fourier multipliers and pseudo-differential operators on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^2({\mathbb {R}}^n)$$\end{document} and study their boundedness on the Fock-Sobolev spaces Fs,2(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {F}^{s,2}({{\mathbb {C}}}^n)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] SPECTRAL PROPERTIES OF VOLTERRA-TYPE INTEGRAL OPERATORS ON FOCK-SOBOLEV SPACES
    Mengestie, Tesfa
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (06) : 1801 - 1816
  • [42] Semi-commutants of Toeplitz Operators on Fock-Sobolev Space of Nonnegative Orders
    Qin, Jie
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (06)
  • [43] Mixed product of Hankel and Toeplitz operators on Fock-Sobolev spaces of negative orders
    Xu, Chunxu
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2024, 31 (01) : 123 - 138
  • [44] HANKEL BILINEAR FORMS ON GENERALIZED FOCK-SOBOLEV SPACES ON Cn
    Cascante, Carme
    Fabrega, Joan
    Pascuas, Daniel
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 841 - 862
  • [45] Sub-Hilbert relation for Fock-Sobolev type spaces
    Eskandari, Setareh
    Abkar, Ali
    Ahag, Per
    Perala, Antti
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 958 - 969
  • [46] Sub-Hilbert spaces in Fock-Sobolev spaces on Cn
    Abkar, Ali
    ADVANCES IN OPERATOR THEORY, 2023, 8 (02)
  • [47] Fock-Sobolev空间上的拟Carleson测度
    邬碧倩
    曹广福
    中国科学:数学, 2023, 53 (12) : 1827 - 1836
  • [48] Sarason's Toeplitz Product Problem on the Fock-Sobolev Space
    Chen, Jian Jun
    Wang, Xiao Feng
    Xia, Jin
    Cao, Guang Fu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (02) : 288 - 296
  • [49] Boundedness of the Bergman Projection on Generalized Fock-Sobolev Spaces on Cn
    Cascante, Carme
    Fabrega, Joan
    Pascuas, Daniel
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (02)
  • [50] Sums of dual Toeplitz products on the orthogonal complements of Fock-Sobolev spaces
    Yong Chen
    Young Joo Lee
    Acta Mathematica Scientia, 2024, 44 : 810 - 822