Quantum origin of anomalous Floquet phases in cavity-QED materials

被引:0
|
作者
Perez-Gonzalez, Beatriz [1 ,2 ]
Platero, Gloria [1 ]
Gomez-Leon, Alvaro [3 ]
机构
[1] CSIC, Inst Ciencia Mat Madrid ICMM, Madrid, Spain
[2] Univ Augsburg, Inst Phys, Augsburg, Germany
[3] CSIC, Inst Fundamental Phys IFF, Madrid, Spain
来源
COMMUNICATIONS PHYSICS | 2024年 / 7卷 / 01期
关键词
SOLITONS;
D O I
10.1038/s42005-024-01908-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Anomalous Floquet topological phases are unique to periodically driven systems, lacking a static analog. Inspired by Floquet Engineering with classical electromagnetic radiation, Quantum Floquet Engineering has emerged as a promising tool to tailor the properties of quantum materials using quantum light. While the latter recovers the physics of Floquet materials in its semi-classical limit, the mapping between these two scenarios remains mysterious in many aspects. In this work, we discuss the emergence of quantum anomalous topological phases in cavity-QED materials, linking the topological phase transitions in the electron-photon spectrum with those in the 0- and pi-gaps of Floquet quasienergies. Our results establish the microscopic origin of an emergent discrete time-translation symmetry in the matter sector, and link isolated c-QED materials with periodically driven ones. Finally, we discuss the bulk-edge correspondence in terms of hybrid light-matter topological invariants.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Quantum photonic transistor controlled by an atom in a Floquet cavity-QED system
    Li, Haozhen
    Cai, Han
    Xu, Jingping
    Yakovlev, V. V.
    Yang, Yaping
    Wang, Da-Wei
    OPTICS EXPRESS, 2019, 27 (05): : 6946 - 6957
  • [2] Quantum Information Processing in Cavity-QED
    S. J. van Enk
    H. J. Kimble
    H. Mabuchi
    Quantum Information Processing, 2004, 3 : 75 - 90
  • [3] Cavity-QED using quantum dots
    Imamoglu, Atac
    Optics and Photonics News, 2002, 13 (08): : 22 - 25
  • [4] Quantum Information Processing in Cavity-QED
    van Enk, S. J.
    Kimble, H. J.
    Mabuchi, H.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 75 - 90
  • [5] Quantum thermometry based on a cavity-QED setup
    Xie, Dong
    Sun, Feng-Xiao
    Xu, Chunling
    PHYSICAL REVIEW A, 2020, 101 (06)
  • [6] Quantum thermometry based on a cavity-QED setup
    Xie D.
    Sun F.-X.
    Xu C.
    1600, American Physical Society (101):
  • [7] Cavity-QED Quantum Simulator of Dynamical Phases of a Bardeen-Cooper-Schrieffer Superconductor
    Lewis-Swan, Robert J.
    Barberena, Diego
    Cline, Julia R. K.
    Young, Dylan J.
    Thompson, James K.
    Rey, Ana Maria
    PHYSICAL REVIEW LETTERS, 2021, 126 (17)
  • [8] Quantum trajectories and quantum control: Theory and cavity-QED experiment
    Wiseman, HM
    Warszawski, P
    Reiner, J
    Smith, WP
    Orozco, L
    Kuhr, S
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 321 - 324
  • [9] Probing quantum nonlinearity of cavity-QED systems with quantum light
    Hu, C. Y.
    Yang, F. H.
    PHYSICAL REVIEW B, 2021, 104 (18)
  • [10] Cavity-QED simulation of a quantum metamaterial with tunable disorder
    Mazhorin, Grigoriy S.
    Moskalenko, Ilya N.
    Besedin, Ilya S.
    Shapiro, Dmitriy S.
    Remizov, Sergey, V
    Pogosov, Walter, V
    Moskalev, Dmitry O.
    Pishchimova, Anastasia A.
    Dobronosova, Alina A.
    Rodionov, I. A.
    Ustinov, Alexey, V
    PHYSICAL REVIEW A, 2022, 105 (03)