Quantum photonic transistor controlled by an atom in a Floquet cavity-QED system

被引:8
|
作者
Li, Haozhen [1 ,2 ,3 ,4 ,5 ]
Cai, Han [2 ,3 ,4 ,5 ]
Xu, Jingping [1 ]
Yakovlev, V. V. [2 ,3 ,4 ,6 ,7 ]
Yang, Yaping [1 ]
Wang, Da-Wei [2 ,3 ,4 ,8 ]
机构
[1] Tongji Univ, Sch Phys Sci & Engn, Minist Educ, Key Lab Adv Microstruct Mat, Shanghai 200092, Peoples R China
[2] Zhejiang Univ, Interdisciplinary Ctr Quantum Informat, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, Zhejiang Prov Key Lab Quantum Technol & Device, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[4] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China
[5] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
[6] Texas A&M Univ, Dept Elect & Comp Engn, Dept Biomed Engn, College Stn, TX 77843 USA
[7] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[8] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
来源
OPTICS EXPRESS | 2019年 / 27卷 / 05期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
OPTICAL TRANSISTOR; SWITCH; GATE; PHASE; DOT;
D O I
10.1364/OE.27.006946
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The photon transmission of a Floquet cavity quantum electrodynamic (QED) system containing three periodically modulated cavities interacting with a two-level atom is investigated. The input-output relations and the second-order correlation functions of the output fields are calculated. The system demonstrates the feature of a quantum photonic transistor, i.e., the photon transmission is controlled by the quantum states of the atom. This device can be used as a building block for various quantum information processing. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:6946 / 6957
页数:12
相关论文
共 50 条
  • [1] A scheme of quantum repeaters with single atom and cavity-QED
    Yin, Zhen-Qiang
    Zhao, Yi-Bo
    Yang, Yong
    Zou, Chang-Ling
    Han, Zheng-Fu
    Guo, Guang-Can
    [J]. OPTICS COMMUNICATIONS, 2010, 283 (04) : 617 - 621
  • [2] Photonic ququart logic assisted by the cavity-QED system
    Luo, Ming-Xing
    Deng, Yun
    Li, Hui-Ran
    Ma, Song-Ya
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [3] Photonic ququart logic assisted by the cavity-QED system
    Ming-Xing Luo
    Yun Deng
    Hui-Ran Li
    Song-Ya Ma
    [J]. Scientific Reports, 5
  • [4] Quantum Information Processing in Cavity-QED
    S. J. van Enk
    H. J. Kimble
    H. Mabuchi
    [J]. Quantum Information Processing, 2004, 3 : 75 - 90
  • [5] Quantum Information Processing in Cavity-QED
    van Enk, S. J.
    Kimble, H. J.
    Mabuchi, H.
    [J]. QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 75 - 90
  • [6] Quantum thermometry based on a cavity-QED setup
    Xie, Dong
    Sun, Feng-Xiao
    Xu, Chunling
    [J]. PHYSICAL REVIEW A, 2020, 101 (06)
  • [7] Quantum thermometry based on a cavity-QED setup
    Xie, Dong
    Sun, Feng-Xiao
    Xu, Chunling
    [J]. Physical Review A, 2020, 101 (06):
  • [8] Quantum-dot Mollow triplet in a semiconductor cavity-QED system
    Roy, C.
    Hughes, S.
    [J]. NANOPHOTONICS IV, 2012, 8424
  • [9] Effects of bipolar atom-cavity coupling in the cavity-QED microlaser
    Seo, Wontaek
    Hong, Hyun-Gue
    Lee, Moonjoo
    Choi, Wonshik
    Dasari, R. R.
    Feld, M. S.
    Lee, Jai-Hyung
    An, Kyungwon
    [J]. 2007 PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1-4, 2007, : 205 - +
  • [10] Quantum trajectories and quantum control: Theory and cavity-QED experiment
    Wiseman, HM
    Warszawski, P
    Reiner, J
    Smith, WP
    Orozco, L
    Kuhr, S
    [J]. QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 321 - 324