Quantum trajectories and quantum control: Theory and cavity-QED experiment

被引:0
|
作者
Wiseman, HM [1 ]
Warszawski, P [1 ]
Reiner, J [1 ]
Smith, WP [1 ]
Orozco, L [1 ]
Kuhr, S [1 ]
机构
[1] Griffith Univ, Sch Sci, Ctr Quantum Dynam, Brisbane, Qld 4111, Australia
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum trajectories describe the stochastic evolution of an open quantum system conditioned on continuous monitoring of its output, such as by an ideal photodetector. They are useful for answering questions of principle, for conditional state preparation, and (probably most importantly) for quantum feedback control systems. For the latter two applications, it is necessary to use quantum trajectories for realistic detectors, and we outline a theory to do this. Finally, we present the first experimental results for quantum feedback in the "deep quantum" regime where quantum trajectories must be used for designing and modeling the feedback. In a cavity QED system we show that a state conditioned on the detection of a single photon can be frozen (its dynamics stopped) and then released after an arbitrary lapse of time.
引用
收藏
页码:321 / 324
页数:4
相关论文
共 50 条
  • [1] Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation
    Wiseman, HM
    PHYSICAL REVIEW A, 2002, 65 (03): : 6
  • [2] Quantum theory of frequency pulling in the cavity-QED microlaser
    Hong, Hyun-Gue
    An, Kyungwon
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [3] Quantum Information Processing in Cavity-QED
    S. J. van Enk
    H. J. Kimble
    H. Mabuchi
    Quantum Information Processing, 2004, 3 : 75 - 90
  • [4] Cavity-QED using quantum dots
    Imamoglu, Atac
    Optics and Photonics News, 2002, 13 (08): : 22 - 25
  • [5] Quantum Information Processing in Cavity-QED
    van Enk, S. J.
    Kimble, H. J.
    Mabuchi, H.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 75 - 90
  • [6] Probing quantum nonlinearity of cavity-QED systems with quantum light
    Hu, C. Y.
    Yang, F. H.
    PHYSICAL REVIEW B, 2021, 104 (18)
  • [7] Quantum thermometry based on a cavity-QED setup
    Xie D.
    Sun F.-X.
    Xu C.
    1600, American Physical Society (101):
  • [8] Quantum thermometry based on a cavity-QED setup
    Xie, Dong
    Sun, Feng-Xiao
    Xu, Chunling
    PHYSICAL REVIEW A, 2020, 101 (06)
  • [9] Quantum power boost in a nonstationary cavity-QED quantum heat engine
    Dodonov, A. V.
    Valente, D.
    Werlang, T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (36)
  • [10] Cavity-QED simulation of a quantum metamaterial with tunable disorder
    Mazhorin, Grigoriy S.
    Moskalenko, Ilya N.
    Besedin, Ilya S.
    Shapiro, Dmitriy S.
    Remizov, Sergey, V
    Pogosov, Walter, V
    Moskalev, Dmitry O.
    Pishchimova, Anastasia A.
    Dobronosova, Alina A.
    Rodionov, I. A.
    Ustinov, Alexey, V
    PHYSICAL REVIEW A, 2022, 105 (03)