Cavity-QED simulation of a quantum metamaterial with tunable disorder

被引:4
|
作者
Mazhorin, Grigoriy S. [1 ,2 ,3 ]
Moskalenko, Ilya N. [2 ,3 ]
Besedin, Ilya S. [2 ,3 ]
Shapiro, Dmitriy S. [4 ,5 ,6 ]
Remizov, Sergey, V [4 ,5 ,7 ]
Pogosov, Walter, V [4 ,8 ,9 ]
Moskalev, Dmitry O. [4 ,10 ]
Pishchimova, Anastasia A. [4 ,10 ]
Dobronosova, Alina A. [4 ,10 ]
Rodionov, I. A. [4 ,10 ]
Ustinov, Alexey, V [11 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia
[2] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
[3] Russian Quantum Ctr, Skolkovo 143025, Moscow Region, Russia
[4] Dukhov Res Inst Automat VNIIA, Moscow 127055, Russia
[5] Russian Acad Sci, VA Kotelnikov Inst Radio Engn & Elect, Moscow 125009, Russia
[6] Karlsruhe Inst Technol, Inst Quantum Mat & Technol, D-76021 Karlsruhe, Germany
[7] Natl Res Univ, Dept Phys, Higher Sch Econ, Moscow 101000, Russia
[8] Russian Acad Sci, Inst Theoret & Appl Electrodynam, Moscow 125412, Russia
[9] HSE Univ, Moscow 109028, Russia
[10] Bauman Moscow State Tech Univ, FMN Lab, Moscow 105005, Russia
[11] Karlsruhe Inst Technol, Phys Inst, D-76131 Karlsruhe, Germany
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
D O I
10.1103/PhysRevA.105.033519
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We explore experimentally a quantum metamaterial based on a superconducting chip with 25 frequency-tunable transmon qubits coupled to a common coplanar resonator. The collective bright and dark modes are probed via the microwave response, i.e., by measuring the transmission amplitude of an external microwave signal. All qubits have individual control and readout lines. Their frequency tunability allows the number N of resonantly coupled qubits to change and a disorder in their excitation frequencies to be introduced with preassigned distributions. While increasing N, we demonstrate the expected N-1/2 scaling law for the energy gap (Rabi splitting) between bright modes around the cavity frequency. By introducing a controllable disorder and averaging the transmission amplitude over a large number of realizations, we demonstrate a decay of mesoscopic fluctuations which mimics an approach towards the thermodynamic limit. The collective bright states survive in the presence of disorder when the strength of individual qubit coupling to the cavity dominates over the disorder strength.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Quantum Information Processing in Cavity-QED
    S. J. van Enk
    H. J. Kimble
    H. Mabuchi
    [J]. Quantum Information Processing, 2004, 3 : 75 - 90
  • [2] Quantum Information Processing in Cavity-QED
    van Enk, S. J.
    Kimble, H. J.
    Mabuchi, H.
    [J]. QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 75 - 90
  • [3] Quantum thermometry based on a cavity-QED setup
    Xie, Dong
    Sun, Feng-Xiao
    Xu, Chunling
    [J]. PHYSICAL REVIEW A, 2020, 101 (06)
  • [4] Quantum thermometry based on a cavity-QED setup
    Xie, Dong
    Sun, Feng-Xiao
    Xu, Chunling
    [J]. Physical Review A, 2020, 101 (06):
  • [5] Quantum trajectories and quantum control: Theory and cavity-QED experiment
    Wiseman, HM
    Warszawski, P
    Reiner, J
    Smith, WP
    Orozco, L
    Kuhr, S
    [J]. QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 321 - 324
  • [6] Probing quantum nonlinearity of cavity-QED systems with quantum light
    Hu, C. Y.
    Yang, F. H.
    [J]. PHYSICAL REVIEW B, 2021, 104 (18)
  • [7] A scheme of quantum repeaters with single atom and cavity-QED
    Yin, Zhen-Qiang
    Zhao, Yi-Bo
    Yang, Yong
    Zou, Chang-Ling
    Han, Zheng-Fu
    Guo, Guang-Can
    [J]. OPTICS COMMUNICATIONS, 2010, 283 (04) : 617 - 621
  • [8] Quantum theory of frequency pulling in the cavity-QED microlaser
    Hong, Hyun-Gue
    An, Kyungwon
    [J]. PHYSICAL REVIEW A, 2012, 85 (02):
  • [9] Quantum power boost in a nonstationary cavity-QED quantum heat engine
    Dodonov, A. V.
    Valente, D.
    Werlang, T.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (36)
  • [10] Spectrum of the Cavity-QED Micro laser: Quantum Frequency Pulling
    An, Kyungwon
    [J]. 2012 14TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2012), 2012,