Probing quantum nonlinearity of cavity-QED systems with quantum light

被引:1
|
作者
Hu, C. Y. [1 ]
Yang, F. H. [1 ,2 ]
机构
[1] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[2] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
PARITY CONSERVATION; ELECTRON-SPIN; DOT; ENTANGLEMENT; SPECTROSCOPY; MANIPULATION; PHOTONS;
D O I
10.1103/PhysRevB.104.205301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Giant optical circular birefringence (GCB) induced by a single quantum-dot-confined spin in an optical microcavity finds wide applications in quantum and optical technologies, such as quantum gates, quantum transistors, quantum repeaters, quantum routers, etc. If the system is probed with a classical light, such as the laser light where the photons are uncorrelated with each other, then the single-photon GCB is detected. In this work we develop a general approach to investigate the many-body dynamics of n photons bound to one quantum emitter and apply this method to calculate the n-photon GCB probed with quantum light in Fock states. With suppressed atomic saturation, quantum light loads photons into dressed states more efficiently than classical light such that the whole Jaynes-Cummings energy ladder and the quantum nonlinearity related to the multiphoton transitions can be observed. The n-photon GCB lying at the cavity mode resonance allows the spin-cavity quantum gates and quantum transistors to extend from single-photon to n-photon operations and generate entangled photonic Fock states, i.e., the NOON states which are useful for quantum metrology and lithography.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Quantum Information Processing in Cavity-QED
    S. J. van Enk
    H. J. Kimble
    H. Mabuchi
    [J]. Quantum Information Processing, 2004, 3 : 75 - 90
  • [2] Quantum Information Processing in Cavity-QED
    van Enk, S. J.
    Kimble, H. J.
    Mabuchi, H.
    [J]. QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 75 - 90
  • [3] III–V quantum light source and cavity-QED on Silicon
    I. J. Luxmoore
    R. Toro
    O. Del Pozo-Zamudio
    N. A. Wasley
    E. A. Chekhovich
    A. M. Sanchez
    R. Beanland
    A. M. Fox
    M. S. Skolnick
    H. Y. Liu
    A. I. Tartakovskii
    [J]. Scientific Reports, 3
  • [4] Quantum trajectories and quantum control: Theory and cavity-QED experiment
    Wiseman, HM
    Warszawski, P
    Reiner, J
    Smith, WP
    Orozco, L
    Kuhr, S
    [J]. QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 321 - 324
  • [5] Quantum thermometry based on a cavity-QED setup
    Xie, Dong
    Sun, Feng-Xiao
    Xu, Chunling
    [J]. PHYSICAL REVIEW A, 2020, 101 (06)
  • [6] Quantum thermometry based on a cavity-QED setup
    Xie, Dong
    Sun, Feng-Xiao
    Xu, Chunling
    [J]. Physical Review A, 2020, 101 (06):
  • [7] III-V quantum light source and cavity-QED on Silicon
    Luxmoore, I. J.
    Toro, R.
    Del Pozo-Zamudio, O.
    Wasley, N. A.
    Chekhovich, E. A.
    Sanchez, A. M.
    Beanland, R.
    Fox, A. M.
    Skolnick, M. S.
    Liu, H. Y.
    Tartakovskii, A. I.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [8] Quantum power boost in a nonstationary cavity-QED quantum heat engine
    Dodonov, A. V.
    Valente, D.
    Werlang, T.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (36)
  • [9] Cavity-QED simulation of a quantum metamaterial with tunable disorder
    Mazhorin, Grigoriy S.
    Moskalenko, Ilya N.
    Besedin, Ilya S.
    Shapiro, Dmitriy S.
    Remizov, Sergey, V
    Pogosov, Walter, V
    Moskalev, Dmitry O.
    Pishchimova, Anastasia A.
    Dobronosova, Alina A.
    Rodionov, I. A.
    Ustinov, Alexey, V
    [J]. PHYSICAL REVIEW A, 2022, 105 (03)
  • [10] A scheme of quantum repeaters with single atom and cavity-QED
    Yin, Zhen-Qiang
    Zhao, Yi-Bo
    Yang, Yong
    Zou, Chang-Ling
    Han, Zheng-Fu
    Guo, Guang-Can
    [J]. OPTICS COMMUNICATIONS, 2010, 283 (04) : 617 - 621