Quantum origin of anomalous Floquet phases in cavity-QED materials

被引:0
|
作者
Perez-Gonzalez, Beatriz [1 ,2 ]
Platero, Gloria [1 ]
Gomez-Leon, Alvaro [3 ]
机构
[1] CSIC, Inst Ciencia Mat Madrid ICMM, Madrid, Spain
[2] Univ Augsburg, Inst Phys, Augsburg, Germany
[3] CSIC, Inst Fundamental Phys IFF, Madrid, Spain
来源
COMMUNICATIONS PHYSICS | 2024年 / 7卷 / 01期
关键词
SOLITONS;
D O I
10.1038/s42005-024-01908-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Anomalous Floquet topological phases are unique to periodically driven systems, lacking a static analog. Inspired by Floquet Engineering with classical electromagnetic radiation, Quantum Floquet Engineering has emerged as a promising tool to tailor the properties of quantum materials using quantum light. While the latter recovers the physics of Floquet materials in its semi-classical limit, the mapping between these two scenarios remains mysterious in many aspects. In this work, we discuss the emergence of quantum anomalous topological phases in cavity-QED materials, linking the topological phase transitions in the electron-photon spectrum with those in the 0- and pi-gaps of Floquet quasienergies. Our results establish the microscopic origin of an emergent discrete time-translation symmetry in the matter sector, and link isolated c-QED materials with periodically driven ones. Finally, we discuss the bulk-edge correspondence in terms of hybrid light-matter topological invariants.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Cavity-QED with single trapped ions
    Keller, Matthias
    CONTEMPORARY PHYSICS, 2022, 63 (01) : 1 - 14
  • [22] Environment induced entanglement in cavity-QED
    N. Nayak
    Biplab Ghosh
    A. S. Majumdar
    Indian Journal of Physics, 2010, 84 : 1039 - 1050
  • [23] Environment induced entanglement in cavity-QED
    Nayak, N.
    Ghosh, Biplab
    Majumdar, A. S.
    INDIAN JOURNAL OF PHYSICS, 2010, 84 (08) : 1039 - 1050
  • [24] III-V quantum light source and cavity-QED on Silicon
    Luxmoore, I. J.
    Toro, R.
    Del Pozo-Zamudio, O.
    Wasley, N. A.
    Chekhovich, E. A.
    Sanchez, A. M.
    Beanland, R.
    Fox, A. M.
    Skolnick, M. S.
    Liu, H. Y.
    Tartakovskii, A. I.
    SCIENTIFIC REPORTS, 2013, 3
  • [25] Cavity-QED effects on entangled photon generation from a quantum dot
    Ajiki, Hiroshi
    Ishihara, Hajime
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02): : 371 - 374
  • [26] Nonpeturbative cavity-QED between a single quantum dot and a metal nanoparticle
    Van Vlack, C.
    Kristensen, Philip Trost
    Hughes, S.
    NANOPHOTONICS IV, 2012, 8424
  • [27] Cavity-QED interactions of several atoms
    Esfandiarpour, Saeideh
    Safari, Hassan
    Buhmann, Stefan Yoshi
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2019, 52 (08)
  • [28] Master equations for semiconductor cavity-QED
    Roy, C.
    Hughes, S.
    FOURTH INTERNATIONAL WORKSHOP ON THEORETICAL AND COMPUTATIONAL NANOPHOTONICS (TACONA-PHOTONICS 2011), 2011, 1398
  • [29] Dispersive-coupling-based quantum Zeno effect in a cavity-QED system
    Xu, D. Z.
    Ai, Qing
    Sun, C. P.
    PHYSICAL REVIEW A, 2011, 83 (02):
  • [30] Quantum metrology enhanced by coherence-induced driving in a cavity-QED setup
    Cheng, Weijun
    Hou, S. C.
    Wang, Zhihai
    Yi, X. X.
    PHYSICAL REVIEW A, 2019, 100 (05)