Photonic Simulation of Majorana-Based Jones Polynomials

被引:1
|
作者
Li, Jia-Kun [1 ,2 ,3 ]
Sun, Kai [1 ,2 ,3 ]
Hao, Ze-Yan [1 ,2 ,3 ]
Liang, Jia-He [1 ,2 ,3 ]
Tao, Si-Jing [1 ,2 ,3 ]
Pachos, Jiannis K. [4 ]
Xu, Jin-Shi [1 ,2 ,3 ,5 ]
Han, Yong-Jian [1 ,2 ,3 ,5 ]
Li, Chuan-Feng [1 ,2 ,3 ,5 ]
Guo, Guang-Can [1 ,2 ,3 ,5 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Anhui Prov Key Lab Quantum Network, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[4] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, England
[5] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
QUANTUM; KNOTS; REALIZATION; INVARIANTS; DNA;
D O I
10.1103/PhysRevLett.133.230603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By braiding non-Abelian anyons it is possible to realize fault-tolerant quantum algorithms through the computation of Jones polynomials. So far, this has been an experimentally formidable task. In this Letter, a photonic quantum system employing two-photon correlations and nondissipative imaginary-time evolution is utilized to simulate two inequivalent braiding operations of Majorana zero modes. The resulting amplitudes are shown to be mathematically equivalent to Jones polynomials. The high fidelity of our optical platform allows us to distinguish between a wide range of links, such as Hopf links, Solomon links, Trefoil knots, Figure Eight knots and Borromean rings, through determining their corresponding Jones polynomials. Our photonic quantum simulator represents a significant step towards executing fault-tolerant quantum algorithms based on topological quantum encoding and manipulation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Photonic implementation of Majorana-based Berry phases
    Xu, Jin-Shi
    Sun, Kai
    Pachos, Jiannis K.
    Han, Yong-Jian
    Li, Chuan-Feng
    Guo, Guang-Can
    SCIENCE ADVANCES, 2018, 4 (10):
  • [2] Dephasing of Majorana-based qubits
    Knapp, Christina
    Karzig, Torsten
    Lutchyn, Roman M.
    Nayak, Chetan
    PHYSICAL REVIEW B, 2018, 97 (12)
  • [3] Boost for Majorana-based quantum computing
    Marks, Jacob
    PHYSICS WORLD, 2021, 34 (06) : 7 - 7
  • [4] Majorana-Based Fermionic Quantum Computation
    O'Brien, T. E.
    Rozek, P.
    Akhmerov, A. R.
    PHYSICAL REVIEW LETTERS, 2018, 120 (22)
  • [5] Majorana-based quantum computing in nanowire devices
    Tutschku, C.
    Reinthaler, R. W.
    Lei, C.
    MacDonald, A. H.
    Hankiewicz, E. M.
    PHYSICAL REVIEW B, 2020, 102 (12)
  • [6] Milestones Toward Majorana-Based Quantum Computing
    Aasen, David
    Hell, Michael
    Mishmash, Ryan V.
    Higginbotham, Andrew
    Danon, Jeroen
    Leijnse, Martin
    Jespersen, Thomas S.
    Folk, Joshua A.
    Marcus, Charles M.
    Flensberg, Karsten
    Alicea, Jason
    PHYSICAL REVIEW X, 2016, 6 (03):
  • [7] Optimization of the surface code design for Majorana-based qubits
    Chao, Rui
    Beverland, Michael E.
    Delfosse, Nicolas
    Haa, Jeongwan
    QUANTUM, 2020, 4
  • [8] Optimal diabatic dynamics of Majorana-based quantum gates
    Rahmani, Armin
    Seradjeh, Babak
    Franz, Marcel
    PHYSICAL REVIEW B, 2017, 96 (07)
  • [9] Error generation and propagation in Majorana-based topological qubits
    Conlon, A.
    Pellegrino, D.
    Slingerland, J. K.
    Dooley, S.
    Kells, G.
    PHYSICAL REVIEW B, 2019, 100 (13)
  • [10] Performance of Planar Floquet Codes with Majorana-Based Qubits
    Paetznick, Adam
    Knapp, Christina
    Delfosse, Nicolas
    Bauer, Bela
    Haah, Jeongwan
    Hastings, Matthew B.
    da Silva, Marcus P.
    PRX QUANTUM, 2023, 4 (01):