Majorana-based quantum computing in nanowire devices

被引:21
|
作者
Tutschku, C. [1 ,2 ]
Reinthaler, R. W. [1 ,2 ]
Lei, C. [3 ,4 ]
MacDonald, A. H. [4 ]
Hankiewicz, E. M. [1 ,2 ]
机构
[1] Univ Wurzburg, Fac Phys & Astrophys, D-97074 Wurzburg, Germany
[2] Univ Wurzburg, Wurzburg Dresden Cluster Excellence Ct Qmat, D-97074 Wurzburg, Germany
[3] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[4] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
关键词
NON-ABELIAN STATISTICS; BOUND-STATES; FERMIONS; SUPERCONDUCTOR; SIGNATURE; PARITY; WIRE;
D O I
10.1103/PhysRevB.102.125407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The boundary of one-dimensional topological superconductors might lead to the appearance of Majorana zero modes, whose nontrivial exchange statistics can be used for quantum computing. In branched nanowire networks, one can exchange Majorana modes by time dependently tuning topologically nontrivial parameter regions. In this paper, we simulate the exchange of four Majorana modes in T-shaped junctions made out of p-wave superconducting Rashba wires. We derive concrete experimental predictions for (quasi-)adiabatic braiding times and determine geometric conditions for successful Majorana exchange processes. Moreover, we prove that, in the adiabatic limit, the gating time needs to be smaller than the inverse of the squared superconducting order parameter and scales linearly with the gating potential. Furthermore, we show how to circumvent the formation of additional Majorana modes in branched nanowire systems, arising at wire intersection points of narrow junctions. Finally, we propose a multiqubit setup, allowing for universal quantum computing.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Boost for Majorana-based quantum computing
    Marks, Jacob
    [J]. PHYSICS WORLD, 2021, 34 (06) : 7 - 7
  • [2] Milestones Toward Majorana-Based Quantum Computing
    Aasen, David
    Hell, Michael
    Mishmash, Ryan V.
    Higginbotham, Andrew
    Danon, Jeroen
    Leijnse, Martin
    Jespersen, Thomas S.
    Folk, Joshua A.
    Marcus, Charles M.
    Flensberg, Karsten
    Alicea, Jason
    [J]. PHYSICAL REVIEW X, 2016, 6 (03):
  • [3] Modeling noise and error correction for Majorana-based quantum computing
    Knapp, Christina
    Beverland, Michael
    Pikulin, Dmitry I.
    Karzig, Torsten
    [J]. QUANTUM, 2018, 2
  • [4] Majorana-Based Fermionic Quantum Computation
    O'Brien, T. E.
    Rozek, P.
    Akhmerov, A. R.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (22)
  • [5] Optimal diabatic dynamics of Majorana-based quantum gates
    Rahmani, Armin
    Seradjeh, Babak
    Franz, Marcel
    [J]. PHYSICAL REVIEW B, 2017, 96 (07)
  • [6] Dephasing of Majorana-based qubits
    Knapp, Christina
    Karzig, Torsten
    Lutchyn, Roman M.
    Nayak, Chetan
    [J]. PHYSICAL REVIEW B, 2018, 97 (12)
  • [7] Next steps of quantum transport in Majorana nanowire devices
    Zhang, Hao
    Liu, Dong E.
    Wimmer, Michael
    Kouwenhoven, Leo P.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [8] Next steps of quantum transport in Majorana nanowire devices
    Hao Zhang
    Dong E. Liu
    Michael Wimmer
    Leo P. Kouwenhoven
    [J]. Nature Communications, 10
  • [9] Radio-Frequency Methods for Majorana-Based Quantum Devices: Fast Charge Sensing and Phase-Diagram Mapping
    Razmadze, Davydas
    Sabonis, Deividas
    Malinowski, Filip K.
    Menard, Gerbold C.
    Pauka, Sebastian
    Hung Nguyen
    van Zanten, David M. T.
    O'Farrell, Eoin C. T.
    Suter, Judith
    Krogstrup, Peter
    Kuemmeth, Ferdinand
    Marcus, Charles M.
    [J]. PHYSICAL REVIEW APPLIED, 2019, 11 (06):
  • [10] Photonic implementation of Majorana-based Berry phases
    Xu, Jin-Shi
    Sun, Kai
    Pachos, Jiannis K.
    Han, Yong-Jian
    Li, Chuan-Feng
    Guo, Guang-Can
    [J]. SCIENCE ADVANCES, 2018, 4 (10):