Optimal diabatic dynamics of Majorana-based quantum gates

被引:19
|
作者
Rahmani, Armin [1 ,2 ]
Seradjeh, Babak [3 ]
Franz, Marcel [4 ,5 ]
机构
[1] Western Washington Univ, Dept Phys & Astron, Bellingham, WA 98225 USA
[2] Western Washington Univ, Adv Mat Sci & Engn Ctr, Bellingham, WA 98225 USA
[3] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
[4] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada
[5] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
NANOWIRE; FERMIONS; SUPERCONDUCTOR; COLLOQUIUM; SIGNATURE;
D O I
10.1103/PhysRevB.96.075158
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles, such as Majorana zero modes, and are protected from local environmental perturbations. In the adiabatic regime, with timescales set by the inverse gap of the system, the errors can be made arbitrarily small by performing the process more slowly. To enhance the performance of quantum information processing with Majorana zero modes, we apply the theory of optimal control to the diabatic dynamics of Majorana-based qubits. While we sacrifice complete topological protection, we impose constraints on the optimal protocol to take advantage of the nonlocal nature of topological information and increase the robustness of our gates. By using the Pontryagin's maximum principle, we show that robust equivalent gates to perfect adiabatic braiding can be implemented in finite times through optimal pulses. In our implementation, modifications to the device Hamiltonian are avoided. Focusing on thermally isolated systems, we study the effects of calibration errors and external white and 1/f (pink) noise on Majorana-based gates. While a noise-induced antiadiabatic behavior, where a slower process creates more diabatic excitations, prohibits indefinite enhancement of the robustness of the adiabatic scheme, our fast optimal protocols exhibit remarkable stability to noise and have the potential to significantly enhance the practical performance of Majorana-based information processing.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Dynamics of Majorana-based qubits operated with an array of tunable gates
    Bauer, Bela
    Karzig, Torsten
    Mishmash, Ryan V.
    Antipov, Andrey E.
    Alicea, Jason
    [J]. SCIPOST PHYSICS, 2018, 5 (01):
  • [2] Boost for Majorana-based quantum computing
    Marks, Jacob
    [J]. PHYSICS WORLD, 2021, 34 (06) : 7 - 7
  • [3] Majorana-Based Fermionic Quantum Computation
    O'Brien, T. E.
    Rozek, P.
    Akhmerov, A. R.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (22)
  • [4] Optimal noise-canceling shortcuts to adiabaticity: application to noisy Majorana-based gates
    Ritland, Kyle
    Rahmani, Armin
    [J]. NEW JOURNAL OF PHYSICS, 2018, 20
  • [5] Majorana-based quantum computing in nanowire devices
    Tutschku, C.
    Reinthaler, R. W.
    Lei, C.
    MacDonald, A. H.
    Hankiewicz, E. M.
    [J]. PHYSICAL REVIEW B, 2020, 102 (12)
  • [6] Milestones Toward Majorana-Based Quantum Computing
    Aasen, David
    Hell, Michael
    Mishmash, Ryan V.
    Higginbotham, Andrew
    Danon, Jeroen
    Leijnse, Martin
    Jespersen, Thomas S.
    Folk, Joshua A.
    Marcus, Charles M.
    Flensberg, Karsten
    Alicea, Jason
    [J]. PHYSICAL REVIEW X, 2016, 6 (03):
  • [7] Modeling noise and error correction for Majorana-based quantum computing
    Knapp, Christina
    Beverland, Michael
    Pikulin, Dmitry I.
    Karzig, Torsten
    [J]. QUANTUM, 2018, 2
  • [8] Dephasing of Majorana-based qubits
    Knapp, Christina
    Karzig, Torsten
    Lutchyn, Roman M.
    Nayak, Chetan
    [J]. PHYSICAL REVIEW B, 2018, 97 (12)
  • [9] Diabatic quantum gates
    Salas Peralta, P. J.
    [J]. REVISTA MEXICANA DE FISICA, 2012, 58 (05) : 428 - 437
  • [10] Dephasing and leakage dynamics of noisy Majorana-based qubits: Topological versus Andreev
    Mishmash, Ryan V.
    Bauer, Bela
    von Oppen, Felix
    Alicea, Jason
    [J]. PHYSICAL REVIEW B, 2020, 101 (07)