Photonic implementation of Majorana-based Berry phases

被引:20
|
作者
Xu, Jin-Shi [1 ,2 ]
Sun, Kai [1 ,2 ]
Pachos, Jiannis K. [3 ]
Han, Yong-Jian [1 ,2 ]
Li, Chuan-Feng [1 ,2 ]
Guo, Guang-Can [1 ,2 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
来源
SCIENCE ADVANCES | 2018年 / 4卷 / 10期
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
QUANTUM COMPUTATION; SUPERCONDUCTOR; NANOWIRE; FERMIONS; SYSTEMS;
D O I
10.1126/sciadv.aat6533
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Geometric phases, generated by cyclic evolutions of quantum systems, offer an inspiring playground for advancing fundamental physics and technologies alike. The exotic statistics of anyons realized in physical systems can be interpreted as a topological version of geometric phases. However, non-Abelian statistics has not yet been demonstrated in the laboratory. Here, we use an all-optical quantum system that simulates the statistical evolution of Majorana fermions. As a result, we experimentally realize non-Abelian Berry phases with the topological characteristic that they are invariant under continuous deformations of their control parameters. We implement a universal set of Majorana-inspired gates by performing topological and nontopological evolutions and investigate their resilience against perturbative errors. Our photonic experiment, though not scalable, suggests the intriguing possibility of experimentally simulating Majorana statistics with scalable technologies.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Dephasing of Majorana-based qubits
    Knapp, Christina
    Karzig, Torsten
    Lutchyn, Roman M.
    Nayak, Chetan
    [J]. PHYSICAL REVIEW B, 2018, 97 (12)
  • [2] Boost for Majorana-based quantum computing
    Marks, Jacob
    [J]. PHYSICS WORLD, 2021, 34 (06) : 7 - 7
  • [3] Majorana-Based Fermionic Quantum Computation
    O'Brien, T. E.
    Rozek, P.
    Akhmerov, A. R.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (22)
  • [4] Majorana-based quantum computing in nanowire devices
    Tutschku, C.
    Reinthaler, R. W.
    Lei, C.
    MacDonald, A. H.
    Hankiewicz, E. M.
    [J]. PHYSICAL REVIEW B, 2020, 102 (12)
  • [5] Milestones Toward Majorana-Based Quantum Computing
    Aasen, David
    Hell, Michael
    Mishmash, Ryan V.
    Higginbotham, Andrew
    Danon, Jeroen
    Leijnse, Martin
    Jespersen, Thomas S.
    Folk, Joshua A.
    Marcus, Charles M.
    Flensberg, Karsten
    Alicea, Jason
    [J]. PHYSICAL REVIEW X, 2016, 6 (03):
  • [6] Optimization of the surface code design for Majorana-based qubits
    Chao, Rui
    Beverland, Michael E.
    Delfosse, Nicolas
    Haa, Jeongwan
    [J]. QUANTUM, 2020, 4
  • [7] Error generation and propagation in Majorana-based topological qubits
    Conlon, A.
    Pellegrino, D.
    Slingerland, J. K.
    Dooley, S.
    Kells, G.
    [J]. PHYSICAL REVIEW B, 2019, 100 (13)
  • [8] Optimal diabatic dynamics of Majorana-based quantum gates
    Rahmani, Armin
    Seradjeh, Babak
    Franz, Marcel
    [J]. PHYSICAL REVIEW B, 2017, 96 (07)
  • [9] Performance of Planar Floquet Codes with Majorana-Based Qubits
    Paetznick, Adam
    Knapp, Christina
    Delfosse, Nicolas
    Bauer, Bela
    Haah, Jeongwan
    Hastings, Matthew B.
    da Silva, Marcus P.
    [J]. PRX QUANTUM, 2023, 4 (01):
  • [10] Dynamics of Majorana-based qubits operated with an array of tunable gates
    Bauer, Bela
    Karzig, Torsten
    Mishmash, Ryan V.
    Antipov, Andrey E.
    Alicea, Jason
    [J]. SCIPOST PHYSICS, 2018, 5 (01):