Photonic Simulation of Majorana-Based Jones Polynomials

被引:1
|
作者
Li, Jia-Kun [1 ,2 ,3 ]
Sun, Kai [1 ,2 ,3 ]
Hao, Ze-Yan [1 ,2 ,3 ]
Liang, Jia-He [1 ,2 ,3 ]
Tao, Si-Jing [1 ,2 ,3 ]
Pachos, Jiannis K. [4 ]
Xu, Jin-Shi [1 ,2 ,3 ,5 ]
Han, Yong-Jian [1 ,2 ,3 ,5 ]
Li, Chuan-Feng [1 ,2 ,3 ,5 ]
Guo, Guang-Can [1 ,2 ,3 ,5 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Anhui Prov Key Lab Quantum Network, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[4] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, England
[5] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
QUANTUM; KNOTS; REALIZATION; INVARIANTS; DNA;
D O I
10.1103/PhysRevLett.133.230603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By braiding non-Abelian anyons it is possible to realize fault-tolerant quantum algorithms through the computation of Jones polynomials. So far, this has been an experimentally formidable task. In this Letter, a photonic quantum system employing two-photon correlations and nondissipative imaginary-time evolution is utilized to simulate two inequivalent braiding operations of Majorana zero modes. The resulting amplitudes are shown to be mathematically equivalent to Jones polynomials. The high fidelity of our optical platform allows us to distinguish between a wide range of links, such as Hopf links, Solomon links, Trefoil knots, Figure Eight knots and Borromean rings, through determining their corresponding Jones polynomials. Our photonic quantum simulator represents a significant step towards executing fault-tolerant quantum algorithms based on topological quantum encoding and manipulation.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Zeros of Jones polynomials of graphs
    Dong, Fengming
    Jin, Xian'an
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):
  • [22] Jones polynomials of periodic knots
    Bae, YJ
    Kim, YK
    Park, CY
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 58 (02) : 261 - 270
  • [23] JONES POLYNOMIALS OF PERIODIC LINKS
    MURASUGI, K
    PACIFIC JOURNAL OF MATHEMATICS, 1988, 131 (02) : 319 - 329
  • [24] Nonalternating knots and Jones polynomials
    Nicholson, Neil R.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2008, 17 (08) : 983 - 1003
  • [25] The descendant colored Jones polynomials
    Garoufalidis, Stavros
    Kashaev, Rinat
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2023, 19 (05) : 2307 - 2334
  • [26] On links with cyclotomic Jones polynomials
    Champanerkar, Abhijit
    Kofman, Ilya
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 1655 - 1668
  • [27] Cluster algebras and Jones polynomials
    Lee, Kyungyong
    Schiffler, Ralf
    SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (04):
  • [28] Cluster algebras and Jones polynomials
    Kyungyong Lee
    Ralf Schiffler
    Selecta Mathematica, 2019, 25
  • [29] The colored Jones polynomials of doubles of knots
    Tanaka, Toshifumi
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2008, 17 (08) : 925 - 937
  • [30] THE JONES AND ALEXANDER POLYNOMIALS FOR SINGULAR LINKS
    Fiedler, Thomas
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2010, 19 (07) : 859 - 866