Photonic Simulation of Majorana-Based Jones Polynomials

被引:1
|
作者
Li, Jia-Kun [1 ,2 ,3 ]
Sun, Kai [1 ,2 ,3 ]
Hao, Ze-Yan [1 ,2 ,3 ]
Liang, Jia-He [1 ,2 ,3 ]
Tao, Si-Jing [1 ,2 ,3 ]
Pachos, Jiannis K. [4 ]
Xu, Jin-Shi [1 ,2 ,3 ,5 ]
Han, Yong-Jian [1 ,2 ,3 ,5 ]
Li, Chuan-Feng [1 ,2 ,3 ,5 ]
Guo, Guang-Can [1 ,2 ,3 ,5 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Anhui Prov Key Lab Quantum Network, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[4] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, England
[5] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
QUANTUM; KNOTS; REALIZATION; INVARIANTS; DNA;
D O I
10.1103/PhysRevLett.133.230603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By braiding non-Abelian anyons it is possible to realize fault-tolerant quantum algorithms through the computation of Jones polynomials. So far, this has been an experimentally formidable task. In this Letter, a photonic quantum system employing two-photon correlations and nondissipative imaginary-time evolution is utilized to simulate two inequivalent braiding operations of Majorana zero modes. The resulting amplitudes are shown to be mathematically equivalent to Jones polynomials. The high fidelity of our optical platform allows us to distinguish between a wide range of links, such as Hopf links, Solomon links, Trefoil knots, Figure Eight knots and Borromean rings, through determining their corresponding Jones polynomials. Our photonic quantum simulator represents a significant step towards executing fault-tolerant quantum algorithms based on topological quantum encoding and manipulation.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Colored Jones polynomials without tails
    Lee, Christine Ruey Shan
    van der Veen, Roland
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (06): : 2857 - 2865
  • [32] A virtualized skein relation for Jones polynomials
    Kamada, N
    Nakabo, S
    Satoh, S
    ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (02) : 467 - 475
  • [33] A topological model for the coloured Jones polynomials
    Anghel, Cristina Ana-Maria
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (03):
  • [34] Cyclotomic expansion of generalized Jones polynomials
    Berest, Yuri
    Gallagher, Joseph
    Samuelson, Peter
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)
  • [35] Jones polynomials and their zeros for a family of links
    Jin, XA
    Zhang, FJ
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 333 : 183 - 196
  • [36] Quantum Algorithms for Colored Jones Polynomials
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    QUANTUM INFORMATION AND COMPUTATION VII, 2009, 7342
  • [37] ON JONES POLYNOMIALS OF ALTERNATING PRETZEL KNOTS
    Hara, Masao
    Yamamoto, Makoto
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (14)
  • [38] A RELATIONSHIP BETWEEN THE JONES AND KAUFFMAN POLYNOMIALS
    KING, C
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (01) : 307 - 323
  • [39] The Jones polynomials of freely periodic knots
    Chbili, N
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2000, 9 (07) : 885 - 891
  • [40] A topological model for the coloured Jones polynomials
    Cristina Ana-Maria Anghel
    Selecta Mathematica, 2022, 28