Scalable Low-Temperature CO2 Electrolysis: Current Status and Outlook

被引:3
|
作者
Lee, Hojeong [1 ]
Kwon, Seontaek [1 ]
Park, Namgyoo [1 ]
Cha, Sun Gwan [2 ]
Lee, Eunyoung [1 ]
Kong, Tae-Hoon [1 ]
Cha, Jihoo [1 ]
Kwon, Youngkook [1 ,2 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
[2] UNIST, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
来源
JACS AU | 2024年 / 4卷 / 09期
基金
新加坡国家研究基金会;
关键词
CO2; electrolysis; Membrane electrodeassembly; Carbon capture; Product separation; Commercialization; GAS-DIFFUSION ELECTRODE; OF-THE-ART; CARBON-DIOXIDE; ELECTROCHEMICAL CO2; WATER OXIDATION; FORMIC-ACID; ELECTROCATALYTIC REDUCTION; POLYMER ELECTROLYTE; COPPER-CATALYSTS; EFFICIENT CO2;
D O I
10.1021/jacsau.4c00583
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical CO2 reduction (eCO(2)R) in membrane electrode assemblies (MEAs) has brought e-chemical production one step closer to commercialization because of its advantages of minimized ohmic resistance and stackability. However, the current performance of reported eCO(2)R in MEAs is still far below the threshold for economic feasibility where low overall cell voltage (<2 V) and extensive stability (>5 years) are required. Furthermore, while the production cost of e-chemicals heavily relies on the carbon capture and product separation processes, these areas have received much less attention compared to CO2 electrolysis, itself. In this perspective, we examine the current status of eCO(2)R technologies from both academic and industrial points of view. We highlight the gap between current capabilities and commercialization standards and offer future research directions for eCO(2)R technologies with the hope of achieving industrially viable e-chemical production.
引用
收藏
页码:3383 / 3399
页数:17
相关论文
共 50 条
  • [11] Bipolar membranes for intrinsically stable and scalable CO2 electrolysis
    Petrov, Kostadin V.
    Koopman, Christel I.
    Subramanian, Siddhartha
    Koper, Marc T. M.
    Burdyny, Thomas
    Vermaas, David A.
    NATURE ENERGY, 2024, 9 (08): : 932 - 938
  • [12] Low-temperature in situ CO2 enhanced oil recovery
    Wang, Shuoshi
    Ogbonnaya, Onyekachi
    Chen, Changlong
    Yuan, Na
    Shiau, Benjamin
    Harwell, Jeffrey H.
    FUEL, 2022, 329
  • [13] EFFECT OF LOW-TEMPERATURE ON CO2 ASSIMILATION IN PLANTS OF CEREALS
    KIRICHENKO, YB
    COUDRET, A
    VEISSEIR, P
    ADDAD, S
    CHERNYADYEV, II
    DOKLADY AKADEMII NAUK SSSR, 1991, 317 (01): : 246 - 250
  • [14] Low-temperature CO2 adsorption on Titania nanotubes (TNTs)
    Bhatta, Lakshminarayana Kudinalli Gopalakrishna
    Subramanyam, Seetharamu
    Chengala, Madhusoodana D.
    Bhatta, Umananda Manjunatha
    Venkatesh, Krishna
    SURFACES AND INTERFACES, 2017, 8 : 158 - 162
  • [15] Low-temperature CO2 removal from natural gas
    Berstad, David
    Neksa, Petter
    Anantharaman, Rahul
    2ND TRONDHEIM GAS TECHNOLOGY CONFERENCE, 2012, 26 : 41 - 48
  • [16] Low-temperature CO2 capture technologies - Applications and potential
    Berstad, David
    Anantharaman, Rahul
    Neksa, Petter
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2013, 36 (05): : 1403 - 1416
  • [17] Upgrading biogas by a low-temperature CO2 removal technique
    Yousef, Ahmed M. I.
    Eldrainy, Yehia A.
    El-Maghlany, Wael M.
    Attia, Abdelhamid
    ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (02) : 1143 - 1150
  • [18] Lead Looping for Low-Temperature CO2 Capture and Release
    Wu, Yi
    Liu, Juanjuan
    Zou, Shihui
    Kobayashi, Hisayoshi
    Fan, Jie
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (21): : 9009 - 9015
  • [19] CO2 transformed into highly active catalysts for the oxygen reduction reaction via low-temperature molten salt electrolysis
    Remmel, Anna-Liis
    Ratso, Sander
    Liivand, Kerli
    Danilson, Mati
    Kaare, Katlin
    Mikli, Valdek
    Kruusenberg, Ivar
    ELECTROCHEMISTRY COMMUNICATIONS, 2024, 166
  • [20] WHY CO2 DOES NOT DISSOCIATE ON RH AT LOW-TEMPERATURE
    WEINBERG, WH
    SURFACE SCIENCE, 1983, 128 (2-3) : L224 - L230