Scalable Low-Temperature CO2 Electrolysis: Current Status and Outlook

被引:3
|
作者
Lee, Hojeong [1 ]
Kwon, Seontaek [1 ]
Park, Namgyoo [1 ]
Cha, Sun Gwan [2 ]
Lee, Eunyoung [1 ]
Kong, Tae-Hoon [1 ]
Cha, Jihoo [1 ]
Kwon, Youngkook [1 ,2 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
[2] UNIST, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
来源
JACS AU | 2024年 / 4卷 / 09期
基金
新加坡国家研究基金会;
关键词
CO2; electrolysis; Membrane electrodeassembly; Carbon capture; Product separation; Commercialization; GAS-DIFFUSION ELECTRODE; OF-THE-ART; CARBON-DIOXIDE; ELECTROCHEMICAL CO2; WATER OXIDATION; FORMIC-ACID; ELECTROCATALYTIC REDUCTION; POLYMER ELECTROLYTE; COPPER-CATALYSTS; EFFICIENT CO2;
D O I
10.1021/jacsau.4c00583
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical CO2 reduction (eCO(2)R) in membrane electrode assemblies (MEAs) has brought e-chemical production one step closer to commercialization because of its advantages of minimized ohmic resistance and stackability. However, the current performance of reported eCO(2)R in MEAs is still far below the threshold for economic feasibility where low overall cell voltage (<2 V) and extensive stability (>5 years) are required. Furthermore, while the production cost of e-chemicals heavily relies on the carbon capture and product separation processes, these areas have received much less attention compared to CO2 electrolysis, itself. In this perspective, we examine the current status of eCO(2)R technologies from both academic and industrial points of view. We highlight the gap between current capabilities and commercialization standards and offer future research directions for eCO(2)R technologies with the hope of achieving industrially viable e-chemical production.
引用
收藏
页码:3383 / 3399
页数:17
相关论文
共 50 条
  • [31] LOW-TEMPERATURE MELTING BEHAVIOR OF CO2 CRYSTALLIZED MODIFIED PETS
    MENSITIERI, G
    DELNOBILE, MA
    GUERRA, G
    APICELLA, A
    GHATTA, HA
    POLYMER ENGINEERING AND SCIENCE, 1995, 35 (06): : 506 - 512
  • [32] Low-temperature CO2 adsorption on alkali metal titanate nanotubes
    Upendar, K.
    Kumar, A. Sri Hari
    Lingaiah, N.
    Rao, K. S. Rama
    Prasad, P. S. Sai
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 10 : 191 - 198
  • [33] High Temperature Electrolysis of CO2 for Fuel Production
    Alioshin, Yury
    Kohn, McKenzie
    Rothschild, Avner
    Karni, Jacob
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) : F79 - F87
  • [34] Modes and kinetics of CO2 and CO production from low-temperature oxidation of coal
    Zhang, Yulong
    Wang, Junfeng
    Wu, Jianming
    Xue, Sheng
    Li, Zhengfeng
    Chang, Liping
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2015, 140 : 1 - 8
  • [35] Low-Temperature Desorption of CO2 from Carbamic Acid for CO2 Condensation by Direct Air Capture
    Cao, Furong
    Kikkawa, Soichi
    Yamada, Hidetaka
    Kawasoko, Hideyuki
    Yamazoe, Seiji
    ACS OMEGA, 2024, 9 (38): : 40075 - 40081
  • [36] Estimation of Atmospheric Fossil Fuel CO2 Traced by Δ14C: Current Status and Outlook
    Yu, Ming-Yuan
    Lin, Yu-Chi
    Zhang, Yan-Lin
    ATMOSPHERE, 2022, 13 (12)
  • [37] Energy-Efficient Ethanol Concentration Method for Scalable CO2 Electrolysis
    Barecka, Magda H.
    Dameni, Pritika D. S.
    Muhamad, Marsha Zakir
    Ager, Joel W.
    Lapkin, Alexei A.
    ACS ENERGY LETTERS, 2023, 8 (07) : 3214 - 3220
  • [38] FLUORESCENCE AND THERMOLUMINESCENCE OF N2O, CO, AND CO2 IN AN ARGON MATRIX AT LOW-TEMPERATURE
    FOURNIER, J
    DESON, J
    VERMEIL, C
    PIMENTEL, GC
    JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (12): : 5726 - 5730
  • [39] Low-temperature reactions of CO2 in the presence of iron-titanium intermetallide
    Tsodikov, MV
    Kugel, VY
    Slivinskii, EV
    Mordovin, VP
    RUSSIAN CHEMICAL BULLETIN, 1995, 44 (10) : 1983 - 1984
  • [40] STUDY ON LOW-TEMPERATURE CATALYST FOR CLOSED-CYCLE CO2 LASER
    Li Shiyao
    催化学报, 1998, (05) : 2 - 3