Scalable Low-Temperature CO2 Electrolysis: Current Status and Outlook

被引:3
|
作者
Lee, Hojeong [1 ]
Kwon, Seontaek [1 ]
Park, Namgyoo [1 ]
Cha, Sun Gwan [2 ]
Lee, Eunyoung [1 ]
Kong, Tae-Hoon [1 ]
Cha, Jihoo [1 ]
Kwon, Youngkook [1 ,2 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
[2] UNIST, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
来源
JACS AU | 2024年 / 4卷 / 09期
基金
新加坡国家研究基金会;
关键词
CO2; electrolysis; Membrane electrodeassembly; Carbon capture; Product separation; Commercialization; GAS-DIFFUSION ELECTRODE; OF-THE-ART; CARBON-DIOXIDE; ELECTROCHEMICAL CO2; WATER OXIDATION; FORMIC-ACID; ELECTROCATALYTIC REDUCTION; POLYMER ELECTROLYTE; COPPER-CATALYSTS; EFFICIENT CO2;
D O I
10.1021/jacsau.4c00583
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical CO2 reduction (eCO(2)R) in membrane electrode assemblies (MEAs) has brought e-chemical production one step closer to commercialization because of its advantages of minimized ohmic resistance and stackability. However, the current performance of reported eCO(2)R in MEAs is still far below the threshold for economic feasibility where low overall cell voltage (<2 V) and extensive stability (>5 years) are required. Furthermore, while the production cost of e-chemicals heavily relies on the carbon capture and product separation processes, these areas have received much less attention compared to CO2 electrolysis, itself. In this perspective, we examine the current status of eCO(2)R technologies from both academic and industrial points of view. We highlight the gap between current capabilities and commercialization standards and offer future research directions for eCO(2)R technologies with the hope of achieving industrially viable e-chemical production.
引用
收藏
页码:3383 / 3399
页数:17
相关论文
共 50 条
  • [21] Hierarchically conductive electrodes unlock stable and scalable CO2 electrolysis
    Rufer, Simon
    Nitzsche, Michael P.
    Garimella, Sanjay
    Lake, Jack R.
    Varanasi, Kripa K.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [22] THE CURRENT STATUS OF LOW-TEMPERATURE PRESERVATION OF FUNGI AT CMI
    SMITH, D
    CRYOBIOLOGY, 1983, 20 (06) : 717 - 717
  • [23] THE CURRENT STATUS OF COMMERCIAL LOW-TEMPERATURE SILICON EPITAXY
    BORLAND, JO
    JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 1991, 43 (10): : 23 - 27
  • [24] Current status of low-temperature radiator thermophotovoltaic devices
    Charache, GW
    Egley, JL
    Danielson, LR
    DePoy, DM
    Baldasaro, PF
    Campbell, BC
    Hui, S
    Fraas, LM
    Wojtczuk, SJ
    CONFERENCE RECORD OF THE TWENTY FIFTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 1996, 1996, : 137 - 140
  • [25] Carbonation in Low-Temperature CO2 Electrolyzers: Causes, Consequences, and Solutions
    Ramdin, Mahinder
    Moultos, Othonas A.
    van den Broeke, Leo J. P.
    Gonugunta, Prasad
    Taheri, Peyman
    Vlugt, Thijs J. H.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (18) : 6843 - 6864
  • [26] WHY CO2 DOES NOT DISSOCIATE ON RH AT LOW-TEMPERATURE - COMMENT
    DUBOIS, LH
    SOMORJAI, GA
    SURFACE SCIENCE, 1983, 128 (2-3) : L231 - L235
  • [27] Electrolysis of Low-temperature Suspensions: An Update
    Yasinskiy, Andrey
    Suzdaltsev, Andrey
    Padamata, Sai Krishna
    Polyakov, Petr
    Zaikov, Yuriy
    LIGHT METALS 2020, 2020, : 626 - 636
  • [28] LOW-TEMPERATURE TOLERANCE AND CO2 UPTAKE FOR PLATYOPUNTIAS - A LABORATORY ASSESSMENT
    NOBEL, PS
    JOURNAL OF ARID ENVIRONMENTS, 1990, 18 (03) : 313 - 324
  • [29] Mechanisms for High Displacement Efficiency of Low-Temperature CO2 Floods
    Okuno, R.
    Johns, R. T.
    Sepehrnoori, K.
    SPE JOURNAL, 2011, 16 (04): : 751 - 767
  • [30] Low-temperature dissociation of CO2 molecules on vicinal Cu surfaces
    Koitaya, Takanori
    Shiozawa, Yuichiro
    Yoshikura, Yuki
    Mukai, Kozo
    Yoshimoto, Shinya
    Yoshinobu, Jun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (12) : 9226 - 9233