Scalable Low-Temperature CO2 Electrolysis: Current Status and Outlook

被引:3
|
作者
Lee, Hojeong [1 ]
Kwon, Seontaek [1 ]
Park, Namgyoo [1 ]
Cha, Sun Gwan [2 ]
Lee, Eunyoung [1 ]
Kong, Tae-Hoon [1 ]
Cha, Jihoo [1 ]
Kwon, Youngkook [1 ,2 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
[2] UNIST, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
来源
JACS AU | 2024年 / 4卷 / 09期
基金
新加坡国家研究基金会;
关键词
CO2; electrolysis; Membrane electrodeassembly; Carbon capture; Product separation; Commercialization; GAS-DIFFUSION ELECTRODE; OF-THE-ART; CARBON-DIOXIDE; ELECTROCHEMICAL CO2; WATER OXIDATION; FORMIC-ACID; ELECTROCATALYTIC REDUCTION; POLYMER ELECTROLYTE; COPPER-CATALYSTS; EFFICIENT CO2;
D O I
10.1021/jacsau.4c00583
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical CO2 reduction (eCO(2)R) in membrane electrode assemblies (MEAs) has brought e-chemical production one step closer to commercialization because of its advantages of minimized ohmic resistance and stackability. However, the current performance of reported eCO(2)R in MEAs is still far below the threshold for economic feasibility where low overall cell voltage (<2 V) and extensive stability (>5 years) are required. Furthermore, while the production cost of e-chemicals heavily relies on the carbon capture and product separation processes, these areas have received much less attention compared to CO2 electrolysis, itself. In this perspective, we examine the current status of eCO(2)R technologies from both academic and industrial points of view. We highlight the gap between current capabilities and commercialization standards and offer future research directions for eCO(2)R technologies with the hope of achieving industrially viable e-chemical production.
引用
收藏
页码:3383 / 3399
页数:17
相关论文
共 50 条
  • [41] Improved Solvent Formulations for Efficient CO2 Absorption and Low-Temperature Desorption
    Barzagli, Francesco
    Di Vaira, Massimo
    Mani, Fabrizio
    Peruzzini, Maurizio
    CHEMSUSCHEM, 2012, 5 (09) : 1724 - 1731
  • [42] Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems
    M. Younas
    M. Sohail
    L. K. Leong
    M. JK Bashir
    S. Sumathi
    International Journal of Environmental Science and Technology, 2016, 13 : 1839 - 1860
  • [43] CO2 Capture and Low-Temperature Release by Poly(aminoethyl methacrylate) and Derivatives
    Tiainen, Tony
    Mannisto, Jere K.
    Tenhu, Heikki
    Hietala, Sami
    LANGMUIR, 2022, 38 (17) : 5197 - 5208
  • [44] Clustering-Evolved Frontier Orbital for Low-Temperature CO2 Dissociation
    Pan, Jinliang
    Li, Xiu-e
    Zhu, Yifan
    Zhou, Junyi
    Zhu, Zhen
    Li, Changlin
    Liu, Xianzheng
    Liang, Xiaoyang
    Yang, Zengxu
    Chen, Qiwei
    Ren, Pengju
    Wen, Xiao-Dong
    Zhou, Xiong
    Wu, Kai
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (34) : 18748 - 18752
  • [45] Mathematical modelling of low-temperature hydrogen production with in situ CO2 capture
    Koumpouras, Georgios C.
    Alpay, Esat
    Stepanek, Frantisek
    CHEMICAL ENGINEERING SCIENCE, 2007, 62 (10) : 2833 - 2841
  • [46] Biogas upgrading process via low-temperature CO2 liquefaction and separation
    Yousef, Ahmed M.
    Eldrainy, Yehia A.
    El-Maghlany, Wael M.
    Attia, Abdelhamid
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2017, 45 : 812 - 824
  • [47] Low-Temperature Synthesis of ZnO Nanotubes by Supercritical CO2 Fluid Treatment
    Chang, Kuan-Chang
    Tsai, Tsung-Ming
    Chang, Ting-Chang
    Syu, Yong-En
    Huang, Hui-Chun
    Hung, Ya-Chi
    Young, Tai-Fa
    Gan, Der-Shin
    Ho, New-Jin
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (09) : K47 - K50
  • [48] Tetraethylenepentamine-Modified Silica Nanotubes for Low-Temperature CO2 Capture
    Yao, Manli
    Dong, Yanyan
    Hu, Xin
    Feng, Xingxing
    Jia, Aiping
    Xie, Guanqun
    Hu, Gengshen
    Lu, Jiqing
    Luo, Mengfei
    Fan, Maohong
    ENERGY & FUELS, 2013, 27 (12) : 7673 - 7680
  • [49] Low-temperature CO2 Hydrogenation to Olefins on Anorthic NaCoFe Alloy Carbides
    Han, Jianxiang
    Han, Yu
    Yu, Jiafeng
    Sun, Yannan
    Cui, Xiwen
    Ge, Qingjie
    Sun, Jian
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (09)
  • [50] CO2 Capture from IGCC by Low-Temperature Synthesis Gas Separation
    Berstad, David
    Skaugen, Geir
    Roussanaly, Simon
    Anantharaman, Rahul
    Neksa, Petter
    Jordal, Kristin
    Traedal, Stian
    Gundersen, Truls
    ENERGIES, 2022, 15 (02)