Lead Looping for Low-Temperature CO2 Capture and Release

被引:0
|
作者
Wu, Yi [1 ]
Liu, Juanjuan [2 ]
Zou, Shihui [1 ]
Kobayashi, Hisayoshi [3 ]
Fan, Jie [1 ]
机构
[1] Zhejiang Univ, Dept Chem, Key Lab Appl Chem Zhejiang Prov, Hangzhou 310027, Peoples R China
[2] Hangzhou Dianzi Univ, Coll Mat & Environm Engn, Hangzhou 310036, Peoples R China
[3] Kyoto Inst Technol, Kyoto 6068585, Japan
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2022年 / 126卷 / 21期
基金
中国国家自然科学基金;
关键词
INTEGRATED ABSORPTION-MINERALIZATION; FLY-ASH; EFFICIENT; CARBON; ADSORPTION; GRADIENT;
D O I
10.1021/acs.jpcc.2c02111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The sustainable use of metal oxides to rapidly capture and release CO2 as a C-1 building block at a low energy cost is appealing yet challenging. Herein, we show that vicinal diols (e.g., ethylene glycol, glycerol, and 1,2-propanediol) can significantly accelerate the carbonation rates of PbO at ambient conditions, accompanied by a CO2 uptake capacity (567 mmol mol(-1)) comparable to that of the frequently used CaO and MgO. It is revealed that the in situ generated metal-organic hybrid materials of PbO and vicinal diols are the key intermediates for the reaction cycle. They can rapidly react with CO2 to generate PbCO3, accompanied by the release of vicinal diols for the next reaction cycle. The accelerated CO2 capture at ambient conditions coupled with the easy regeneration of PbO and release of CO2 via calcination of PbCO3 at a low temperature (similar to 300 degrees C) constitutes a new lead looping process with low energy input.
引用
收藏
页码:9009 / 9015
页数:7
相关论文
共 50 条
  • [1] CO2 Capture and Low-Temperature Release by Poly(aminoethyl methacrylate) and Derivatives
    Tiainen, Tony
    Mannisto, Jere K.
    Tenhu, Heikki
    Hietala, Sami
    [J]. LANGMUIR, 2022, 38 (17) : 5197 - 5208
  • [2] Low-temperature CO2 capture technologies - Applications and potential
    Berstad, David
    Anantharaman, Rahul
    Neksa, Petter
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2013, 36 (05): : 1403 - 1416
  • [3] Calcium Looping for CO2 Capture at a Constant High Temperature
    Yin, Junjun
    Qin, Changlei
    Feng, Bo
    Ge, Lei
    Luo, Cong
    Liu, Wenqiang
    An, Hui
    [J]. ENERGY & FUELS, 2014, 28 (01) : 307 - 318
  • [4] CO2 Capture from IGCC by Low-Temperature Synthesis Gas Separation
    Berstad, David
    Skaugen, Geir
    Roussanaly, Simon
    Anantharaman, Rahul
    Neksa, Petter
    Jordal, Kristin
    Traedal, Stian
    Gundersen, Truls
    [J]. ENERGIES, 2022, 15 (02)
  • [5] Tetraethylenepentamine-Modified Silica Nanotubes for Low-Temperature CO2 Capture
    Yao, Manli
    Dong, Yanyan
    Hu, Xin
    Feng, Xingxing
    Jia, Aiping
    Xie, Guanqun
    Hu, Gengshen
    Lu, Jiqing
    Luo, Mengfei
    Fan, Maohong
    [J]. ENERGY & FUELS, 2013, 27 (12) : 7673 - 7680
  • [6] Mathematical modelling of low-temperature hydrogen production with in situ CO2 capture
    Koumpouras, Georgios C.
    Alpay, Esat
    Stepanek, Frantisek
    [J]. CHEMICAL ENGINEERING SCIENCE, 2007, 62 (10) : 2833 - 2841
  • [7] Low-Temperature Desorption of CO2 from Carbamic Acid for CO2 Condensation by Direct Air Capture
    Cao, Furong
    Kikkawa, Soichi
    Yamada, Hidetaka
    Kawasoko, Hideyuki
    Yamazoe, Seiji
    [J]. ACS OMEGA, 2024, 9 (38): : 40075 - 40081
  • [8] Equilibrium unconstrained low-temperature CO2 conversion on doped gallium oxides by chemical looping
    Kang, Keke
    Kakihara, Sota
    Higo, Takuma
    Sampei, Hiroshi
    Saegusa, Koki
    Sekine, Yasushi
    [J]. CHEMICAL COMMUNICATIONS, 2023, 59 (74) : 11061 - 11064
  • [9] Calcium looping sorbents for CO2 capture
    Erans, Maria
    Manovic, Vasilije
    Anthony, Edward J.
    [J]. APPLIED ENERGY, 2016, 180 : 722 - 742
  • [10] CO2 CAPTURE BY CHEMICAL LOOPING COMBUSTION
    Forernl, Carmen R.
    Adanez, Juan
    Gayan, Pilar
    de Diego, Luis F.
    Garcia-Labiano, Francisco
    Abad, Alberto
    [J]. REVISTA COLOMBIANA DE QUIMICA, 2010, 39 (02): : 271 - 285