MULTI-TARGET DETECTION METHOD FOR MAIZE PESTS BASED ON IMPROVED YOLOv8

被引:0
|
作者
Liang, Qiuyan [1 ]
Zhao, Zihan [1 ]
Sun, Jingye [1 ]
Jiang, Tianyue [2 ]
Guo, Ningning [1 ]
Yu, Haiyang [1 ]
Ge, Yiyuan [1 ]
机构
[1] Jiamusi Univ, Sch Mech Engn, Jiamusi, Heilongjiang, Peoples R China
[2] Jiamusi Univ, Coll Informat & Elect Technol, Jiamusi, Heilongjiang, Peoples R China
来源
INMATEH-AGRICULTURAL ENGINEERING | 2024年 / 73卷 / 02期
关键词
object detection; maize pests; yolov8; DAttention; SCConv; REGION DETECTION;
D O I
10.35633/inmateh-73-19
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
When maize is afflicted by pests and diseases, it can lead to a drastic reduction in yield, causing significant economic losses to farmers. Therefore, accurate and efficient detection of maize pest species is crucial for targeted pest control during the management process. To achieve precise detection of maize pest species, this paper proposes a deep learning detection algorithm for maize pests based on an improved YOLOv8n model: Firstly, a maize pest dataset was constructed, comprising 2,756 images of maize pests, according to the types of pests and diseases. Secondly, a deformable attention mechanism (DAttention) was introduced into the backbone network to enhance the model's capability to extract features from images of maize pests. Thirdly, spatial and channel recombination convolution (SCConv) was incorporated into the feature fusion network to reduce the miss rate of small-scale pests. Lastly, the improved model was trained and tested using the newly constructed maize pest dataset. Experimental results demonstrate that the improved model achieved a detection average precision (mAP) of 94.8% at a speed of 171 frames per second (FPS), balancing accuracy and efficiency. The improved model can be deployed in low-computing-power mobile devices to achieve realtime detection, and in the future, more types of maize pests can be detected by adding multi-category datasets and training with new models with more computational power, which is important for the healthy development of maize agriculture
引用
收藏
页码:227 / 238
页数:12
相关论文
共 50 条
  • [41] Improved YOLOv8 Object Detection Algorithm for Traffic Sign Target
    Tian, Peng
    Mao, Li
    Computer Engineering and Applications, 2024, 60 (08) : 202 - 212
  • [42] Multi-Target Recognition Method Based on Improved YOLOv2 Model
    Li Xun
    Shi Binbin
    Liu Yang
    Zhang Lei
    Wang Xiaohua
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (10)
  • [43] YOLOv8-ACCW: Lightweight Grape Leaf Disease Detection Method Based on Improved YOLOv8
    Chen, Zuxing
    Feng, Junjie
    Zhu, Kun
    Yang, Zhenyan
    Wang, Yanhong
    Ren, Mingyue
    IEEE ACCESS, 2024, 12 : 123595 - 123608
  • [44] CES-YOLOv8: Strawberry Maturity Detection Based on the Improved YOLOv8
    Chen, Yongkuai
    Xu, Haobin
    Chang, Pengyan
    Huang, Yuyan
    Zhong, Fenglin
    Jia, Qi
    Chen, Lingxiao
    Zhong, Huaiqin
    Liu, Shuang
    AGRONOMY-BASEL, 2024, 14 (07):
  • [45] YOLOv8-FDD: A Real-Time Vehicle Detection Method Based on Improved YOLOv8
    Liu, Xiaojia
    Wang, Yipeng
    Yu, Dexin
    Yuan, Zimin
    IEEE Access, 2024, 12 : 136280 - 136296
  • [46] Underwater Robot Target Detection Algorithm Based on YOLOv8
    Song, Guangwu
    Chen, Wei
    Zhou, Qilong
    Guo, Chenkai
    ELECTRONICS, 2024, 13 (17)
  • [47] Falling Detection of Toddlers Based on Improved YOLOv8 Models
    Yang, Ziqian
    Tsui, Baiyu
    Ning, Jiachuan
    Wu, Zhihui
    Sensors, 2024, 24 (19)
  • [48] Automotive adhesive defect detection based on improved YOLOv8
    Chunjie Wang
    Qibo Sun
    Xiaogang Dong
    Jia Chen
    Signal, Image and Video Processing, 2024, 18 : 2583 - 2595
  • [49] Fabric defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Li, Shujia
    Luo, Dong
    Tan, Gaochao
    TEXTILE RESEARCH JOURNAL, 2024,
  • [50] An Improved Forest Smoke Detection Model Based on YOLOv8
    Wang, Yue
    Piao, Yan
    Wang, Haowen
    Zhang, Hao
    Li, Bing
    FORESTS, 2024, 15 (03):