MULTI-TARGET DETECTION METHOD FOR MAIZE PESTS BASED ON IMPROVED YOLOv8

被引:0
|
作者
Liang, Qiuyan [1 ]
Zhao, Zihan [1 ]
Sun, Jingye [1 ]
Jiang, Tianyue [2 ]
Guo, Ningning [1 ]
Yu, Haiyang [1 ]
Ge, Yiyuan [1 ]
机构
[1] Jiamusi Univ, Sch Mech Engn, Jiamusi, Heilongjiang, Peoples R China
[2] Jiamusi Univ, Coll Informat & Elect Technol, Jiamusi, Heilongjiang, Peoples R China
来源
INMATEH-AGRICULTURAL ENGINEERING | 2024年 / 73卷 / 02期
关键词
object detection; maize pests; yolov8; DAttention; SCConv; REGION DETECTION;
D O I
10.35633/inmateh-73-19
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
When maize is afflicted by pests and diseases, it can lead to a drastic reduction in yield, causing significant economic losses to farmers. Therefore, accurate and efficient detection of maize pest species is crucial for targeted pest control during the management process. To achieve precise detection of maize pest species, this paper proposes a deep learning detection algorithm for maize pests based on an improved YOLOv8n model: Firstly, a maize pest dataset was constructed, comprising 2,756 images of maize pests, according to the types of pests and diseases. Secondly, a deformable attention mechanism (DAttention) was introduced into the backbone network to enhance the model's capability to extract features from images of maize pests. Thirdly, spatial and channel recombination convolution (SCConv) was incorporated into the feature fusion network to reduce the miss rate of small-scale pests. Lastly, the improved model was trained and tested using the newly constructed maize pest dataset. Experimental results demonstrate that the improved model achieved a detection average precision (mAP) of 94.8% at a speed of 171 frames per second (FPS), balancing accuracy and efficiency. The improved model can be deployed in low-computing-power mobile devices to achieve realtime detection, and in the future, more types of maize pests can be detected by adding multi-category datasets and training with new models with more computational power, which is important for the healthy development of maize agriculture
引用
收藏
页码:227 / 238
页数:12
相关论文
共 50 条
  • [21] Vehicle-Pedestrian Detection Method Based on Improved YOLOv8
    Wang, Bo
    Li, Yuan-Yuan
    Xu, Weijie
    Wang, Huawei
    Hu, Li
    ELECTRONICS, 2024, 13 (11)
  • [22] Lightweight Insulator and Defect Detection Method Based on Improved YOLOv8
    Liu, Yanxing
    Li, Xudong
    Qiao, Ruyu
    Chen, Yu
    Han, Xueliang
    Paul, Agyemang
    Wu, Zhefu
    Applied Sciences (Switzerland), 2024, 14 (19):
  • [23] A Remote Sensing Image Target Detection Algorithm Based on Improved YOLOv8
    Wang, Haoyu
    Yang, Haitao
    Chen, Hang
    Wang, Jinyu
    Zhou, Xixuan
    Xu, Yifan
    APPLIED SCIENCES-BASEL, 2024, 14 (04):
  • [24] Lightweight Road Damage Detection Method Based on Improved YOLOv8
    Xu, Tiefeng
    Huang, He
    Zhang, Hongmin
    Niu, Xiaofu
    Computer Engineering and Applications, 60 (14): : 175 - 186
  • [25] An Insulator Location and Defect Detection Method Based on Improved YOLOv8
    Li, Zhongsheng
    Jiang, Chenda
    Li, Zhongliang
    IEEE ACCESS, 2024, 12 : 106781 - 106792
  • [26] Improved YOLOv8 Lightweight UAV Target Detection Algorithm
    Hu, Junfeng
    Li, Baicong
    Zhu, Hao
    Huang, Xiaowen
    Computer Engineering and Applications, 2024, 60 (08) : 182 - 191
  • [27] Small Target Detection in Refractive Panorama Surveillance Based on Improved YOLOv8
    Zheng, Xinli
    Zou, Jianxin
    Du, Shuai
    Zhong, Ping
    SENSORS, 2024, 24 (03)
  • [28] Small target detection in UAV view based on improved YOLOv8 algorithm
    Xiaoli Zhang
    Guocai Zuo
    Scientific Reports, 15 (1)
  • [29] Improved YOLOv8 Aerial Small Target Detection Method: CRP-YOLO
    Zhao, Zhihong
    Hao, Ziye
    Computer Engineering and Applications, 2024, 60 (13) : 209 - 218
  • [30] Detection of Coal and Gangue Based on Improved YOLOv8
    Zeng, Qingliang
    Zhou, Guangyu
    Wan, Lirong
    Wang, Liang
    Xuan, Guantao
    Shao, Yuanyuan
    SENSORS, 2024, 24 (04)