MULTI-TARGET DETECTION METHOD FOR MAIZE PESTS BASED ON IMPROVED YOLOv8

被引:0
|
作者
Liang, Qiuyan [1 ]
Zhao, Zihan [1 ]
Sun, Jingye [1 ]
Jiang, Tianyue [2 ]
Guo, Ningning [1 ]
Yu, Haiyang [1 ]
Ge, Yiyuan [1 ]
机构
[1] Jiamusi Univ, Sch Mech Engn, Jiamusi, Heilongjiang, Peoples R China
[2] Jiamusi Univ, Coll Informat & Elect Technol, Jiamusi, Heilongjiang, Peoples R China
来源
INMATEH-AGRICULTURAL ENGINEERING | 2024年 / 73卷 / 02期
关键词
object detection; maize pests; yolov8; DAttention; SCConv; REGION DETECTION;
D O I
10.35633/inmateh-73-19
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
When maize is afflicted by pests and diseases, it can lead to a drastic reduction in yield, causing significant economic losses to farmers. Therefore, accurate and efficient detection of maize pest species is crucial for targeted pest control during the management process. To achieve precise detection of maize pest species, this paper proposes a deep learning detection algorithm for maize pests based on an improved YOLOv8n model: Firstly, a maize pest dataset was constructed, comprising 2,756 images of maize pests, according to the types of pests and diseases. Secondly, a deformable attention mechanism (DAttention) was introduced into the backbone network to enhance the model's capability to extract features from images of maize pests. Thirdly, spatial and channel recombination convolution (SCConv) was incorporated into the feature fusion network to reduce the miss rate of small-scale pests. Lastly, the improved model was trained and tested using the newly constructed maize pest dataset. Experimental results demonstrate that the improved model achieved a detection average precision (mAP) of 94.8% at a speed of 171 frames per second (FPS), balancing accuracy and efficiency. The improved model can be deployed in low-computing-power mobile devices to achieve realtime detection, and in the future, more types of maize pests can be detected by adding multi-category datasets and training with new models with more computational power, which is important for the healthy development of maize agriculture
引用
收藏
页码:227 / 238
页数:12
相关论文
共 50 条
  • [31] A wildfire smoke detection based on improved YOLOv8
    Zhou, Jieyang
    Li, Yang
    Yin, Pengfei
    International Journal of Information and Communication Technology, 2024, 25 (06) : 52 - 67
  • [32] RA-YOLOv8: An Improved YOLOv8 Seal Text Detection Method
    Sun, Han
    Tan, Chaohong
    Pang, Si
    Wang, Hancheng
    Huang, Baohua
    ELECTRONICS, 2024, 13 (15)
  • [33] Safety Helmet Detection Based on Improved YOLOv8
    Lin, Bingyan
    IEEE ACCESS, 2024, 12 : 28260 - 28272
  • [34] Face Mask Detection Based on Improved YOLOv8
    Lin, Bingyan
    Hou, Maidi
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 365 - 375
  • [35] A method for counting fish based on improved YOLOv8
    Zhang, Zhenzuo
    Li, Jiawei
    Su, Cuiwen
    Wang, Zhiyong
    Li, Yachao
    Li, Daoliang
    Chen, Yingyi
    Liu, Chunhong
    AQUACULTURAL ENGINEERING, 2024, 107
  • [36] Research on marine flexible biological target detection based on improved YOLOv8 algorithm
    Tian, Yu
    Liu, Yanwen
    Lin, Baohang
    Li, Peng
    PeerJ Computer Science, 2024, 10
  • [37] An Improved YOLOv8 Detector for Multi-Scale Target Detection in Remote Sensing Images
    Yue, Min
    Zhang, Liqiang
    Zhang, Yujin
    Zhang, Haifeng
    IEEE ACCESS, 2024, 12 : 114123 - 114136
  • [38] Stratigraphic Division Method Based on the Improved YOLOv8
    Tang, Lu
    Li, Tingting
    Xu, Chengwu
    Applied Sciences (Switzerland), 2024, 14 (20):
  • [39] Wheat Seed Detection and Counting Method Based on Improved YOLOv8 Model
    Ma, Na
    Su, Yaxin
    Yang, Lexin
    Li, Zhongtao
    Yan, Hongwen
    SENSORS, 2024, 24 (05)
  • [40] Improved YOLOv8 Small Target Detection Algorithm in Aerial Images
    Fu, Jinyi
    Zhang, Zijia
    Sun, Wei
    Zou, Kaixin
    Computer Engineering and Applications, 2024, 60 (06) : 100 - 109