RA-YOLOv8: An Improved YOLOv8 Seal Text Detection Method

被引:0
|
作者
Sun, Han [1 ]
Tan, Chaohong [2 ]
Pang, Si [1 ]
Wang, Hancheng [2 ]
Huang, Baohua [1 ,2 ]
机构
[1] Guangxi Univ, Sch Comp & Elect & Informat, Nanning 530004, Peoples R China
[2] Informat Ctr Guangxi Zhuang Autonomous Reg, Guangxi Key Lab Digital Infrastruct, Nanning 530000, Peoples R China
基金
中国国家自然科学基金;
关键词
YOLOv8; seal text detection; RFEMA; AKConv;
D O I
10.3390/electronics13153001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To detect text from electronic seals that have significant background interference, blurring, text overlapping, and curving, an improved YOLOv8 model named RA-YOLOv8 was developed. The model is primarily based on YOLOv8, with optimized structures in its backbone and neck. The receptive-field attention and efficient multi-scale attention (RFEMA) module is introduced in the backbone. The model's ability to extract and integrate local and global features is enhanced by combining the attention on the receptive-field spatial feature of the receptive-field attention and coordinate attention (RFCA) module and the cross-spatial learning of the efficient multi-scale attention (EMA) module. The Alterable Kernel Convolution (AKConv) module is incorporated in the neck, enhancing the model's detection accuracy of curved text by dynamically adjusting the sampling position. Furthermore, to boost the model's detection performance, the original loss function is replaced with the bounding box regression loss function of Minimum Point Distance Intersection over Union (MPDIoU). Experimental results demonstrate that RA-YOLOv8 surpasses YOLOv8 in terms of precision, recall, and F1 value, with improvements of 0.4%, 1.6%, and 1.03%, respectively, validating its effectiveness and utility in seal text detection.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] YOLOv8-E: An Improved YOLOv8 Algorithm for Eggplant Disease Detection
    Huang, Yuxi
    Zhao, Hong
    Wang, Jie
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [2] CES-YOLOv8: Strawberry Maturity Detection Based on the Improved YOLOv8
    Chen, Yongkuai
    Xu, Haobin
    Chang, Pengyan
    Huang, Yuyan
    Zhong, Fenglin
    Jia, Qi
    Chen, Lingxiao
    Zhong, Huaiqin
    Liu, Shuang
    AGRONOMY-BASEL, 2024, 14 (07):
  • [3] EDGS-YOLOv8: An Improved YOLOv8 Lightweight UAV Detection Model
    Huang, Min
    Mi, Wenkai
    Wang, Yuming
    DRONES, 2024, 8 (07)
  • [4] Improved YOLOv8 for Small Object Detection
    Xue, Huafeng
    Chen, Jilin
    Tang, Ruichun
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKS AND INTERNET OF THINGS, CNIOT 2024, 2024, : 266 - 272
  • [5] An underwater crack detection method based on improved YOLOv8
    Li, Xiaofei
    Xu, Langxing
    Wei, Mengpu
    Zhang, Lixiao
    Zhang, Chen
    Ocean Engineering, 2024, 313
  • [6] YOLOv8-ACCW: Lightweight Grape Leaf Disease Detection Method Based on Improved YOLOv8
    Chen, Zuxing
    Feng, Junjie
    Zhu, Kun
    Yang, Zhenyan
    Wang, Yanhong
    Ren, Mingyue
    IEEE ACCESS, 2024, 12 : 123595 - 123608
  • [7] YOLOv8-FDD: A Real-Time Vehicle Detection Method Based on Improved YOLOv8
    Liu, Xiaojia
    Wang, Yipeng
    Yu, Dexin
    Yuan, Zimin
    IEEE Access, 2024, 12 : 136280 - 136296
  • [8] BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8
    Wang, Xueqiu
    Gao, Huanbing
    Jia, Zemeng
    Li, Zijian
    SENSORS, 2023, 23 (20)
  • [9] YOLOv8-LMG: An Improved Bearing Defect Detection Algorithm Based on YOLOv8
    Liu, Minggao
    Zhang, Ming
    Chen, Xinlan
    Zheng, Chunting
    Wang, Haifeng
    PROCESSES, 2024, 12 (05)
  • [10] YOLOv8-UCB: Visual Detection of Pouch Battery Using Improved YOLOv8
    Hao, Hao
    Yu, Xiang
    IEEE Access, 2024, 12 : 194899 - 194910