Automotive adhesive defect detection based on improved YOLOv8

被引:0
|
作者
Chunjie Wang
Qibo Sun
Xiaogang Dong
Jia Chen
机构
[1] Changchun University of Technology,Department of Mathematics and Statistics
来源
关键词
Automotive adhesive defect detection; Real-time object detection; Attention mechanism; YOLOv8; WIoU loss function;
D O I
暂无
中图分类号
学科分类号
摘要
In automotive adhesive defect detection, manual inspection suffers from low efficiency and blind spots in human vision, which affects the performance of parts. Therefore, automated detection methods are particularly important. To address the issue of adhesive defects significantly impacting production during automated gluing processes, we propose an adhesive defect detection method for automotive applications based on the improved YOLOv8 (named YOLOv8n-SSE). First, we used the SSE (skip squeeze and excitation) attention mechanism in the backbone part to dynamically adjust the importance of different channels in our model and allow our model to selectively focus on important features. Then, the original bounding box loss function is replaced by the WIoU loss function. Experimental results demonstrate that this method improves the mAP50 of the original YOLOv8n by 3.25% and achieves an average detection speed of 7.9ms per image, equivalent to 126.58 frames per second (FPS), meeting the real-time defect detection requirements.
引用
收藏
页码:2583 / 2595
页数:12
相关论文
共 50 条
  • [1] Automotive adhesive defect detection based on improved YOLOv8
    Wang, Chunjie
    Sun, Qibo
    Dong, Xiaogang
    Chen, Jia
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2583 - 2595
  • [2] Research on gear flank surface defect detection of automotive transmissions based on improved YOLOv8
    Yuan, Haibing
    Yang, Yiyang
    Guo, Bingqing
    Zhao, Fengsheng
    Zhang, Di
    Yang, Shuai
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [3] Fabric defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Li, Shujia
    Luo, Dong
    Tan, Gaochao
    [J]. TEXTILE RESEARCH JOURNAL, 2024,
  • [4] Defect Detection of Photovoltaic Cells Based on Improved YOLOv8
    Zhou Ying
    Yan Yuze
    Chen Haiyong
    Pei Shenghu
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (08)
  • [5] BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8
    Wang, Xueqiu
    Gao, Huanbing
    Jia, Zemeng
    Li, Zijian
    [J]. SENSORS, 2023, 23 (20)
  • [6] YOLOv8-LMG: An Improved Bearing Defect Detection Algorithm Based on YOLOv8
    Liu, Minggao
    Zhang, Ming
    Chen, Xinlan
    Zheng, Chunting
    Wang, Haifeng
    [J]. PROCESSES, 2024, 12 (05)
  • [7] Improved Steel Surface Defect Detection Algorithm Based on YOLOv8
    You, Congzhe
    Kong, Haozheng
    [J]. IEEE ACCESS, 2024, 12 : 99570 - 99577
  • [8] An Insulator Location and Defect Detection Method Based on Improved YOLOv8
    Li, Zhongsheng
    Jiang, Chenda
    Li, Zhongliang
    [J]. IEEE ACCESS, 2024, 12 : 106781 - 106792
  • [9] Research on improved YOLOv8 algorithm for insulator defect detection
    Lin Zhang
    Boqun Li
    Yang Cui
    Yushan Lai
    Jing Gao
    [J]. Journal of Real-Time Image Processing, 2024, 21
  • [10] An Improved YOLOv8 Algorithm for Rail Surface Defect Detection
    Wang, Yan
    Zhang, Kehua
    Wang, Ling
    Wu, Lintong
    [J]. IEEE ACCESS, 2024, 12 : 44984 - 44997