Fabric defect detection algorithm based on improved YOLOv8

被引:1
|
作者
Chen, Chang [1 ]
Zhou, Qihong [1 ,2 ,3 ]
Li, Shujia [1 ,2 ,3 ]
Luo, Dong [1 ]
Tan, Gaochao [1 ]
机构
[1] Donghua Univ, Coll Mech Engn, Shanghai, Peoples R China
[2] Minist Educ, Engn Res Ctr Digitalized Text & Fash Technol, Beijing, Peoples R China
[3] Donghua Univ, Engn Res Ctr Adv Text Machinery, Minist Educ, Shanghai, Peoples R China
基金
国家重点研发计划;
关键词
Defect detection; attention mechanisms; loss function; yolov8; feature fusion;
D O I
10.1177/00405175241261092
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
Aiming at the problems of low detection accuracy and high leakage rate in traditional detection algorithms, an improved YOLOv8 algorithm is proposed for automatic detection of fabric defects. A swin transformer block was added to the C2f module in the backbone network, which can transfer information between multiple attention layers in parallel to capture fabric defect information and improve the detection accuracy of small-sized defects. To enhance the model's performance in detecting defects of various sizes, a bidirectional feature pyramid network (BiFPN) was incorporated into the neck. This allows for the assignment of different weights to defect features in different layers. A convolution block attention module (CBAM) was added to the feature fusion layer, enabling the model to automatically increase the weight of essential features and suppress nonessential features during training to solve the problem of leakage detection of small-sized defects due to occlusion and background confusion. The Wise-IoU (WIoU) loss function replaces the conventional loss function, addressing sample imbalance and directing the model to prioritize average-quality samples. This modification contributes to an overall improvement in the model's performance. The results of the experiment proved that on the self-constructed fabric defect dataset, the algorithm in this paper achieved an accuracy of 97.7%, recall of 95.1%, and mAP of 96.8%, which are 4.4%, 9.4%, and 5.1% higher than those of the YOLOv8 algorithm, respectively. On the AliCloud Tianchi dataset, the algorithm achieves 52.3%, 49.2%, and 49.8% in terms of accuracy, recall, and mAP, respectively, which is an improvement of 4.4% in terms of accuracy, 2.8% in terms of recall, and 2.7% in terms of mAP compared with the baseline algorithm. The improved YOLOv8 algorithm has a high detection accuracy, low leakage rate, and a detection speed of 107.5 FPS, which aligns with the real-time defect detection speed in the industry.
引用
收藏
页码:235 / 251
页数:17
相关论文
共 50 条
  • [1] Textile Defect Detection Algorithm Based on the Improved YOLOv8
    Song, Wenfei
    Lang, Du
    Zhang, Jiahui
    Zheng, Meilian
    Li, Xiaoming
    IEEE ACCESS, 2025, 13 : 11217 - 11231
  • [2] Improved Road Defect Detection Algorithm Based on YOLOv8
    Wang, Xueqiu
    Gao, Huanbing
    Jia, Zemeng
    Computer Engineering and Applications, 2024, 60 (17) : 179 - 190
  • [3] A Road Defect Detection Algorithm Based on Improved YOLOv8
    Niu, Yiqing
    Cao, Jianrong
    Wang, Yuanchang
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT III, 2025, 2183 : 369 - 383
  • [4] Lightweight insulator defect detection algorithm based on improved YOLOv8
    Tang, Mingyue
    Wu, Hang
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 197 - 201
  • [5] YOLOv8-LMG: An Improved Bearing Defect Detection Algorithm Based on YOLOv8
    Liu, Minggao
    Zhang, Ming
    Chen, Xinlan
    Zheng, Chunting
    Wang, Haifeng
    PROCESSES, 2024, 12 (05)
  • [6] Improved Steel Surface Defect Detection Algorithm Based on YOLOv8
    You, Congzhe
    Kong, Haozheng
    IEEE ACCESS, 2024, 12 : 99570 - 99577
  • [7] A Real-Time Fabric Defect Detection Method Based on Improved YOLOv8
    Jin, Yanxia
    Liu, Xinyu
    Nan, Keliang
    Wang, Songsong
    Wang, Ting
    Zhang, Zhuangwei
    Zhang, Xiaozhu
    APPLIED SCIENCES-BASEL, 2025, 15 (06):
  • [8] Research on improved YOLOv8 algorithm for insulator defect detection
    Lin Zhang
    Boqun Li
    Yang Cui
    Yushan Lai
    Jing Gao
    Journal of Real-Time Image Processing, 2024, 21
  • [9] Improved YOLOv8 Algorithm for Industrial Surface Defect Detection
    Su, Jia
    Jia, Ze
    Qin, Yichang
    Zhang, Jianyan
    Computer Engineering and Applications, 2024, 60 (14) : 187 - 196
  • [10] An Improved YOLOv8 Algorithm for Rail Surface Defect Detection
    Wang, Yan
    Zhang, Kehua
    Wang, Ling
    Wu, Lintong
    IEEE ACCESS, 2024, 12 : 44984 - 44997