Fabric defect detection algorithm based on improved YOLOv8

被引:0
|
作者
Chen, Chang [1 ]
Zhou, Qihong [1 ,2 ,3 ]
Li, Shujia [1 ,2 ,3 ]
Luo, Dong [1 ]
Tan, Gaochao [1 ]
机构
[1] Donghua Univ, Coll Mech Engn, Shanghai, Peoples R China
[2] Minist Educ, Engn Res Ctr Digitalized Text & Fash Technol, Beijing, Peoples R China
[3] Donghua Univ, Engn Res Ctr Adv Text Machinery, Minist Educ, Shanghai, Peoples R China
基金
国家重点研发计划;
关键词
Defect detection; attention mechanisms; loss function; yolov8; feature fusion;
D O I
10.1177/00405175241261092
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
Aiming at the problems of low detection accuracy and high leakage rate in traditional detection algorithms, an improved YOLOv8 algorithm is proposed for automatic detection of fabric defects. A swin transformer block was added to the C2f module in the backbone network, which can transfer information between multiple attention layers in parallel to capture fabric defect information and improve the detection accuracy of small-sized defects. To enhance the model's performance in detecting defects of various sizes, a bidirectional feature pyramid network (BiFPN) was incorporated into the neck. This allows for the assignment of different weights to defect features in different layers. A convolution block attention module (CBAM) was added to the feature fusion layer, enabling the model to automatically increase the weight of essential features and suppress nonessential features during training to solve the problem of leakage detection of small-sized defects due to occlusion and background confusion. The Wise-IoU (WIoU) loss function replaces the conventional loss function, addressing sample imbalance and directing the model to prioritize average-quality samples. This modification contributes to an overall improvement in the model's performance. The results of the experiment proved that on the self-constructed fabric defect dataset, the algorithm in this paper achieved an accuracy of 97.7%, recall of 95.1%, and mAP of 96.8%, which are 4.4%, 9.4%, and 5.1% higher than those of the YOLOv8 algorithm, respectively. On the AliCloud Tianchi dataset, the algorithm achieves 52.3%, 49.2%, and 49.8% in terms of accuracy, recall, and mAP, respectively, which is an improvement of 4.4% in terms of accuracy, 2.8% in terms of recall, and 2.7% in terms of mAP compared with the baseline algorithm. The improved YOLOv8 algorithm has a high detection accuracy, low leakage rate, and a detection speed of 107.5 FPS, which aligns with the real-time defect detection speed in the industry.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Improved Steel Surface Defect Detection Algorithm Based on YOLOv8
    You, Congzhe
    Kong, Haozheng
    [J]. IEEE ACCESS, 2024, 12 : 99570 - 99577
  • [2] YOLOv8-LMG: An Improved Bearing Defect Detection Algorithm Based on YOLOv8
    Liu, Minggao
    Zhang, Ming
    Chen, Xinlan
    Zheng, Chunting
    Wang, Haifeng
    [J]. PROCESSES, 2024, 12 (05)
  • [3] Research on improved YOLOv8 algorithm for insulator defect detection
    Lin Zhang
    Boqun Li
    Yang Cui
    Yushan Lai
    Jing Gao
    [J]. Journal of Real-Time Image Processing, 2024, 21
  • [4] An Improved YOLOv8 Algorithm for Rail Surface Defect Detection
    Wang, Yan
    Zhang, Kehua
    Wang, Ling
    Wu, Lintong
    [J]. IEEE ACCESS, 2024, 12 : 44984 - 44997
  • [5] Research on improved YOLOv8 algorithm for insulator defect detection
    Zhang, Lin
    Li, Boqun
    Cui, Yang
    Lai, Yushan
    Gao, Jing
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (01)
  • [6] Insulator defect detection algorithm based on improved YOLOv8 for electric power
    Su, Jun
    Yuan, Yongqi
    Przystupa, Krzysztof
    Kochan, Orest
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6197 - 6209
  • [7] Automotive adhesive defect detection based on improved YOLOv8
    Chunjie Wang
    Qibo Sun
    Xiaogang Dong
    Jia Chen
    [J]. Signal, Image and Video Processing, 2024, 18 : 2583 - 2595
  • [8] Automotive adhesive defect detection based on improved YOLOv8
    Wang, Chunjie
    Sun, Qibo
    Dong, Xiaogang
    Chen, Jia
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2583 - 2595
  • [9] Defect Detection of Photovoltaic Cells Based on Improved YOLOv8
    Zhou Ying
    Yan Yuze
    Chen Haiyong
    Pei Shenghu
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (08)
  • [10] Steel Surface Defect Detection Algorithm Based on YOLOv8
    Song, Xuan
    Cao, Shuzhen
    Zhang, Jingwei
    Hou, Zhenguo
    [J]. ELECTRONICS, 2024, 13 (05)