On the Support of Grothendieck Polynomials

被引:1
|
作者
Meszaros, Karola [1 ]
Setiabrata, Linus [2 ]
Dizier, Avery St. [3 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Primary; 05E05; SCHUBERT POLYNOMIALS; COMPLEXES; POLYTOPES;
D O I
10.1007/s00026-024-00712-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Grothendieck polynomials Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} of permutations w is an element of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in S_n$$\end{document} were introduced by Lascoux and Sch & uuml;tzenberger (C R Acad Sci Paris S & eacute;r I Math 295(11):629-633, 1982) as a set of distinguished representatives for the K-theoretic classes of Schubert cycles in the K-theory of the flag variety of Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>n$$\end{document}. We conjecture that the exponents of nonzero terms of the Grothendieck polynomial Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} form a poset under componentwise comparison that is isomorphic to an induced subposet of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>n$$\end{document}. When w is an element of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in S_n$$\end{document} avoids a certain set of patterns, we conjecturally connect the coefficients of Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} with the M & ouml;bius function values of the aforementioned poset with 0<^>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{0}$$\end{document} appended. We prove special cases of our conjectures for Grassmannian and fireworks permutations
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Top-degree components of Grothendieck and Lascoux polynomials
    Pan, Jianping
    Yu, Tianyi
    ALGEBRAIC COMBINATORICS, 2024, 7 (01):
  • [42] Finite sum Cauchy identity for dual Grothendieck polynomials
    Lascoux, Alain
    Naruse, Hiroshi
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2014, 90 (07) : 87 - 91
  • [43] Set-valued Rothe tableaux and Grothendieck polynomials
    Fan, Neil J.Y.
    Guo, Peter L.
    Advances in Applied Mathematics, 2021, 128
  • [44] Proof of a conjectured Mobius inversion formula for Grothendieck polynomials
    Pechenik, Oliver
    Satriano, Matthew
    SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (05):
  • [45] Modifications of Tutte-Grothendieck invariants and Tutte polynomials
    Kochol, Martin
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 70 - 73
  • [46] Set-valued Rothe tableaux and Grothendieck polynomials
    Fan, Neil J. Y.
    Guo, Peter L.
    ADVANCES IN APPLIED MATHEMATICS, 2021, 128
  • [47] Symplectic Grothendieck polynomials, universal characters and integrable systems
    Huang, Fang
    Li, Chuanzhong
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 461
  • [48] Polynomials, Quantum Query Complexity, and Grothendieck's Inequality
    Aaronson, Scott
    Ambainis, Andris
    Iraids, Janis
    Kokainis, Martins
    Smotrovs, Juris
    31ST CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC 2016), 2016, 50
  • [49] Combinatorial formulas for shifted dual stable Grothendieck polynomials
    Lewis, Joel
    Marberg, Eric
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [50] Double Grothendieck polynomials for symplectic and odd orthogonal Grassmannians
    Hudson, Thomas
    Ikeda, Takeshi
    Matsumura, Tomoo
    Naruse, Hiroshi
    JOURNAL OF ALGEBRA, 2020, 546 : 294 - 314