On the Support of Grothendieck Polynomials

被引:1
|
作者
Meszaros, Karola [1 ]
Setiabrata, Linus [2 ]
Dizier, Avery St. [3 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Primary; 05E05; SCHUBERT POLYNOMIALS; COMPLEXES; POLYTOPES;
D O I
10.1007/s00026-024-00712-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Grothendieck polynomials Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} of permutations w is an element of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in S_n$$\end{document} were introduced by Lascoux and Sch & uuml;tzenberger (C R Acad Sci Paris S & eacute;r I Math 295(11):629-633, 1982) as a set of distinguished representatives for the K-theoretic classes of Schubert cycles in the K-theory of the flag variety of Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>n$$\end{document}. We conjecture that the exponents of nonzero terms of the Grothendieck polynomial Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} form a poset under componentwise comparison that is isomorphic to an induced subposet of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>n$$\end{document}. When w is an element of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in S_n$$\end{document} avoids a certain set of patterns, we conjecturally connect the coefficients of Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} with the M & ouml;bius function values of the aforementioned poset with 0<^>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{0}$$\end{document} appended. We prove special cases of our conjectures for Grassmannian and fireworks permutations
引用
收藏
页数:22
相关论文
共 50 条
  • [21] CRYSTAL STRUCTURES FOR SYMMETRIC GROTHENDIECK POLYNOMIALS
    CARA MONICAL
    OLIVER PECHENIK
    TRAVIS SCRIMSHAW
    Transformation Groups, 2021, 26 : 1025 - 1075
  • [22] DETERMINANTAL FORMULAS FOR DUAL GROTHENDIECK POLYNOMIALS
    Amanov, Alimzhan
    Yeliussizov, Damir
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) : 4113 - 4128
  • [23] Free fermions and canonical Grothendieck polynomials
    Iwao, Shinsuke
    Motegi, Kohei
    Scrimshaw, Travis
    ALGEBRAIC COMBINATORICS, 2024, 7 (01):
  • [24] Positive specializations of symmetric Grothendieck polynomials
    Yeliussizov, Damir
    ADVANCES IN MATHEMATICS, 2020, 363
  • [25] Duality and deformations of stable Grothendieck polynomials
    Damir Yeliussizov
    Journal of Algebraic Combinatorics, 2017, 45 : 295 - 344
  • [26] Newton polytopes and symmetric Grothendieck polynomials
    Escobar, Laura
    Yong, Alexander
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (08) : 831 - 834
  • [27] Noncommutative Schubert calculus and Grothendieck polynomials
    Lenart, C
    ADVANCES IN MATHEMATICS, 1999, 143 (01) : 159 - 183
  • [28] CRYSTAL STRUCTURES FOR SYMMETRIC GROTHENDIECK POLYNOMIALS
    Monical, Cara
    Pechenik, Oliver
    Scrimshaw, Travis
    TRANSFORMATION GROUPS, 2021, 26 (03) : 1025 - 1075
  • [29] Residues, Grothendieck Polynomials, and K-Theoretic Thom Polynomials
    Rimanyi, Richard
    Szenes, Andras
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (23) : 20039 - 20075
  • [30] An algebraic proof of determinant formulas of Grothendieck polynomials
    Matsumura, Tomoo
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2017, 93 (08) : 82 - 85