Grothendieck polynomials Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} of permutations w is an element of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in S_n$$\end{document} were introduced by Lascoux and Sch & uuml;tzenberger (C R Acad Sci Paris S & eacute;r I Math 295(11):629-633, 1982) as a set of distinguished representatives for the K-theoretic classes of Schubert cycles in the K-theory of the flag variety of Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>n$$\end{document}. We conjecture that the exponents of nonzero terms of the Grothendieck polynomial Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} form a poset under componentwise comparison that is isomorphic to an induced subposet of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>n$$\end{document}. When w is an element of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in S_n$$\end{document} avoids a certain set of patterns, we conjecturally connect the coefficients of Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} with the M & ouml;bius function values of the aforementioned poset with 0<^>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{0}$$\end{document} appended. We prove special cases of our conjectures for Grassmannian and fireworks permutations
机构:
Keio Univ, Fac Business & Commerce, Hiyoshi 4-1-1,Kohoku Ku, Yokohama, Kanagawa 2238521, JapanKeio Univ, Fac Business & Commerce, Hiyoshi 4-1-1,Kohoku Ku, Yokohama, Kanagawa 2238521, Japan
Iwao, Shinsuke
Motegi, Kohei
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Marine Sci & Technol, Fac Marine Technol, Etchujima 2-1-6,Koto Ku, Tokyo 1358533, JapanKeio Univ, Fac Business & Commerce, Hiyoshi 4-1-1,Kohoku Ku, Yokohama, Kanagawa 2238521, Japan
Motegi, Kohei
Scrimshaw, Travis
论文数: 0引用数: 0
h-index: 0
机构:
Hokkaido Univ, Fac Sci, 5 Chome Kita 8 Jonishi,Kita Ward, Sapporo, Hokkaido 0600808, JapanKeio Univ, Fac Business & Commerce, Hiyoshi 4-1-1,Kohoku Ku, Yokohama, Kanagawa 2238521, Japan