The symmetric Grothendieck polynomials representing Schubert classes in the Ktheory of Grassmannians are generating functions for semistandard set-valued tableaux. We construct a type A(n) crystal structure on these tableaux. This crystal yields a new combinatorial formula for decomposing symmetric Grothendieck polynomials into Schur polynomials. For single-columns and single-rows, we give a new combinatorial interpretation of Lascoux polynomials (K-analogs of Demazure characters) by constructing a K-theoretic analog of crystals with an appropriate analog of a Demazure crystal. We relate our crystal structure to combinatorial models using excited Young diagrams, Gelfand-Tsetlin patterns via the 5-vertex model, and biwords via Hecke insertion to compute symmetric Grothendieck polynomials.
机构:
Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
Kazakh British Tech Univ, Alma Ata, KazakhstanUniv Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA