CRYSTAL STRUCTURES FOR SYMMETRIC GROTHENDIECK POLYNOMIALS

被引:5
|
作者
Monical, Cara [1 ]
Pechenik, Oliver [2 ]
Scrimshaw, Travis [3 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[3] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
关键词
LITTLEWOOD-RICHARDSON RULE; EXCITED YOUNG-DIAGRAMS; K-THEORY; SCHUBERT CALCULUS; Q-ANALOG; COMBINATORICS; FORMULA; CONJECTURE; TABLEAUX; HOMOLOGY;
D O I
10.1007/s00031-020-09623-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The symmetric Grothendieck polynomials representing Schubert classes in the Ktheory of Grassmannians are generating functions for semistandard set-valued tableaux. We construct a type A(n) crystal structure on these tableaux. This crystal yields a new combinatorial formula for decomposing symmetric Grothendieck polynomials into Schur polynomials. For single-columns and single-rows, we give a new combinatorial interpretation of Lascoux polynomials (K-analogs of Demazure characters) by constructing a K-theoretic analog of crystals with an appropriate analog of a Demazure crystal. We relate our crystal structure to combinatorial models using excited Young diagrams, Gelfand-Tsetlin patterns via the 5-vertex model, and biwords via Hecke insertion to compute symmetric Grothendieck polynomials.
引用
收藏
页码:1025 / 1075
页数:51
相关论文
共 50 条
  • [1] CRYSTAL STRUCTURES FOR SYMMETRIC GROTHENDIECK POLYNOMIALS
    CARA MONICAL
    OLIVER PECHENIK
    TRAVIS SCRIMSHAW
    Transformation Groups, 2021, 26 : 1025 - 1075
  • [2] Positive specializations of symmetric Grothendieck polynomials
    Yeliussizov, Damir
    ADVANCES IN MATHEMATICS, 2020, 363
  • [3] Newton polytopes and symmetric Grothendieck polynomials
    Escobar, Laura
    Yong, Alexander
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (08) : 831 - 834
  • [4] Lattice polytopes from Schur and symmetric Grothendieck polynomials
    Bayer, Margaret
    Goeckner, Bennet
    Hong, Su Ji
    McAllister, Tyrrell
    Olsen, McCabe
    Pinckney, Casey
    Vega, Julianne
    Yip, Martha
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [5] DEGREES OF SYMMETRIC GROTHENDIECK POLYNOMIALS AND CASTELNUOVO-MUMFORD REGULARITY
    Rajchgot, Jenna
    Ren, Yi
    Robichaux, Colleen
    St Dizier, Avery
    Weigandt, Anna
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (04) : 1405 - 1416
  • [6] Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs
    Yeliussizov, Damir
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 161 : 453 - 485
  • [7] On the Degree of Grothendieck Polynomials
    Dreyer, Matt
    Meszaros, Karola
    St Dizier, Avery
    ALGEBRAIC COMBINATORICS, 2024, 7 (03):
  • [8] Flagged Grothendieck polynomials
    Matsumura, Tomoo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 49 (03) : 209 - 228
  • [9] Flagged Grothendieck polynomials
    Tomoo Matsumura
    Journal of Algebraic Combinatorics, 2019, 49 : 209 - 228
  • [10] On the Support of Grothendieck Polynomials
    Meszaros, Karola
    Setiabrata, Linus
    Dizier, Avery St.
    ANNALS OF COMBINATORICS, 2024,