CRYSTAL STRUCTURES FOR SYMMETRIC GROTHENDIECK POLYNOMIALS

被引:5
|
作者
Monical, Cara [1 ]
Pechenik, Oliver [2 ]
Scrimshaw, Travis [3 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[3] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
关键词
LITTLEWOOD-RICHARDSON RULE; EXCITED YOUNG-DIAGRAMS; K-THEORY; SCHUBERT CALCULUS; Q-ANALOG; COMBINATORICS; FORMULA; CONJECTURE; TABLEAUX; HOMOLOGY;
D O I
10.1007/s00031-020-09623-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The symmetric Grothendieck polynomials representing Schubert classes in the Ktheory of Grassmannians are generating functions for semistandard set-valued tableaux. We construct a type A(n) crystal structure on these tableaux. This crystal yields a new combinatorial formula for decomposing symmetric Grothendieck polynomials into Schur polynomials. For single-columns and single-rows, we give a new combinatorial interpretation of Lascoux polynomials (K-analogs of Demazure characters) by constructing a K-theoretic analog of crystals with an appropriate analog of a Demazure crystal. We relate our crystal structure to combinatorial models using excited Young diagrams, Gelfand-Tsetlin patterns via the 5-vertex model, and biwords via Hecke insertion to compute symmetric Grothendieck polynomials.
引用
收藏
页码:1025 / 1075
页数:51
相关论文
共 50 条
  • [41] Double Grothendieck Polynomials and Colored Lattice Models
    Buciumas, Valentin
    Scrimshaw, Travis
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (10) : 7231 - 7258
  • [42] Frozen pipes: lattice models for Grothendieck polynomials
    Brubaker, Ben
    Frechette, Claire
    Hardt, Andrew
    Tibor, Emily
    Weber, Katherine
    ALGEBRAIC COMBINATORICS, 2023, 6 (03):
  • [43] On μ-symmetric polynomials
    Yang, Jing
    Yap, Chee K.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (12)
  • [44] Symmetric polynomials on
    Vasylyshyn, Taras
    EUROPEAN JOURNAL OF MATHEMATICS, 2020, 6 (01) : 164 - 178
  • [45] SYMMETRIC POLYNOMIALS
    BRATLEY, P
    MCKAY, JKS
    COMMUNICATIONS OF THE ACM, 1967, 10 (07) : 450 - &
  • [46] Crystal and molecular structures of symmetric vinamidinium salts
    Sridhar, MA
    Lokanath, NK
    Prasad, JS
    Begum, NS
    Suma, KN
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2002, 381 : 151 - 161
  • [47] Crystal Structures for Double Stanley Symmetric Functions
    Hawkes, Graham
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 20
  • [48] Crystal and molecular structures of symmetric vinamidinium salts
    Sridhar, M.A.
    Lokanath, N.K.
    Prasad, J. Shashidhara
    Begum, Noor Shahina
    Suma, K.N.
    Molecular Crystals and Liquid Crystals Science and Technology Section A: Molecular Crystals and Liquid Crystals, 2002, 381 : 151 - 161
  • [49] Refined dual Grothendieck polynomials, integrability, and the Schur measureRefined dual Grothendieck polynomials, integrability...K. Motegi, T. Scrimshaw
    Kohei Motegi
    Travis Scrimshaw
    Selecta Mathematica, 2025, 31 (3)
  • [50] Grothendieck Property for the Symmetric Projective Tensor Product
    Li, Yongjin
    Bu, Qingying
    Journal of Mathematical Study, 2016, 49 (04): : 429 - 432