CRYSTAL STRUCTURES FOR SYMMETRIC GROTHENDIECK POLYNOMIALS

被引:5
|
作者
Monical, Cara [1 ]
Pechenik, Oliver [2 ]
Scrimshaw, Travis [3 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[3] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
关键词
LITTLEWOOD-RICHARDSON RULE; EXCITED YOUNG-DIAGRAMS; K-THEORY; SCHUBERT CALCULUS; Q-ANALOG; COMBINATORICS; FORMULA; CONJECTURE; TABLEAUX; HOMOLOGY;
D O I
10.1007/s00031-020-09623-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The symmetric Grothendieck polynomials representing Schubert classes in the Ktheory of Grassmannians are generating functions for semistandard set-valued tableaux. We construct a type A(n) crystal structure on these tableaux. This crystal yields a new combinatorial formula for decomposing symmetric Grothendieck polynomials into Schur polynomials. For single-columns and single-rows, we give a new combinatorial interpretation of Lascoux polynomials (K-analogs of Demazure characters) by constructing a K-theoretic analog of crystals with an appropriate analog of a Demazure crystal. We relate our crystal structure to combinatorial models using excited Young diagrams, Gelfand-Tsetlin patterns via the 5-vertex model, and biwords via Hecke insertion to compute symmetric Grothendieck polynomials.
引用
收藏
页码:1025 / 1075
页数:51
相关论文
共 50 条