On the Support of Grothendieck Polynomials

被引:1
|
作者
Meszaros, Karola [1 ]
Setiabrata, Linus [2 ]
Dizier, Avery St. [3 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Primary; 05E05; SCHUBERT POLYNOMIALS; COMPLEXES; POLYTOPES;
D O I
10.1007/s00026-024-00712-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Grothendieck polynomials Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} of permutations w is an element of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in S_n$$\end{document} were introduced by Lascoux and Sch & uuml;tzenberger (C R Acad Sci Paris S & eacute;r I Math 295(11):629-633, 1982) as a set of distinguished representatives for the K-theoretic classes of Schubert cycles in the K-theory of the flag variety of Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>n$$\end{document}. We conjecture that the exponents of nonzero terms of the Grothendieck polynomial Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} form a poset under componentwise comparison that is isomorphic to an induced subposet of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>n$$\end{document}. When w is an element of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in S_n$$\end{document} avoids a certain set of patterns, we conjecturally connect the coefficients of Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} with the M & ouml;bius function values of the aforementioned poset with 0<^>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{0}$$\end{document} appended. We prove special cases of our conjectures for Grassmannian and fireworks permutations
引用
收藏
页数:22
相关论文
共 50 条
  • [1] On the Degree of Grothendieck Polynomials
    Dreyer, Matt
    Meszaros, Karola
    St Dizier, Avery
    ALGEBRAIC COMBINATORICS, 2024, 7 (03):
  • [2] Flagged Grothendieck polynomials
    Matsumura, Tomoo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 49 (03) : 209 - 228
  • [3] Flagged Grothendieck polynomials
    Tomoo Matsumura
    Journal of Algebraic Combinatorics, 2019, 49 : 209 - 228
  • [4] Specializations of grothendieck polynomials
    Buch, AS
    Rimányi, R
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (01) : 1 - 4
  • [5] Decompositions of Grothendieck Polynomials
    Pechenik, Oliver
    Searles, Dominic
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (10) : 3214 - 3241
  • [6] Factorial Grothendieck polynomials
    McNamara, Peter J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [7] Transition on Grothendieck polynomials
    Lascoux, A
    PHYSICS AND COMBINATORICS, 2001, : 164 - 179
  • [8] The Stembridge equality for skew stable Grothendieck polynomials and skew dual stable Grothendieck polynomials
    Abney-McPeek, Fiona
    An, Serena
    Ng, Jakin S.
    ALGEBRAIC COMBINATORICS, 2022, 5 (02):
  • [9] AN ORTHODONTIA FORMULA FOR GROTHENDIECK POLYNOMIALS
    Meszaros, Karola
    Setiabrata, Linus
    St Dizier, Avery
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (02) : 1281 - 1303
  • [10] Combinatorics of Double Grothendieck Polynomials
    Hawkes, Graham
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (04): : 1 - 40