On the Support of Grothendieck Polynomials

被引:1
|
作者
Meszaros, Karola [1 ]
Setiabrata, Linus [2 ]
Dizier, Avery St. [3 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Primary; 05E05; SCHUBERT POLYNOMIALS; COMPLEXES; POLYTOPES;
D O I
10.1007/s00026-024-00712-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Grothendieck polynomials Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} of permutations w is an element of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in S_n$$\end{document} were introduced by Lascoux and Sch & uuml;tzenberger (C R Acad Sci Paris S & eacute;r I Math 295(11):629-633, 1982) as a set of distinguished representatives for the K-theoretic classes of Schubert cycles in the K-theory of the flag variety of Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>n$$\end{document}. We conjecture that the exponents of nonzero terms of the Grothendieck polynomial Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} form a poset under componentwise comparison that is isomorphic to an induced subposet of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>n$$\end{document}. When w is an element of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in S_n$$\end{document} avoids a certain set of patterns, we conjecturally connect the coefficients of Gw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {G}_w$$\end{document} with the M & ouml;bius function values of the aforementioned poset with 0<^>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{0}$$\end{document} appended. We prove special cases of our conjectures for Grassmannian and fireworks permutations
引用
收藏
页数:22
相关论文
共 50 条
  • [31] UNIFIED FRAMEWORK FOR TABLEAU MODELS OF GROTHENDIECK POLYNOMIALS
    Hawkes, Graham
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2024, 19 (03) : 86 - 101
  • [32] Vertex models for Canonical Grothendieck polynomials and their duals
    Gunna, Ajeeth
    Zinn-Justin, Paul
    ALGEBRAIC COMBINATORICS, 2023, 6 (01):
  • [33] INTERVAL STRUCTURE OF THE PIERI FORMULA FOR GROTHENDIECK POLYNOMIALS
    Pons, Viviane
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (01) : 123 - 146
  • [34] Constructing Maximal Pipedreams of Double Grothendieck Polynomials
    Chou, Chen-An
    Yu, Tianyi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (03):
  • [35] Weighted Tutte-Grothendieck Polynomials of Graphs
    Chakraborty, Himadri Shekhar
    Miezaki, Tsuyoshi
    Zheng, Chong
    GRAPHS AND COMBINATORICS, 2023, 39 (05)
  • [36] Double Grothendieck Polynomials and Colored Lattice Models
    Buciumas, Valentin
    Scrimshaw, Travis
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (10) : 7231 - 7258
  • [37] Frozen pipes: lattice models for Grothendieck polynomials
    Brubaker, Ben
    Frechette, Claire
    Hardt, Andrew
    Tibor, Emily
    Weber, Katherine
    ALGEBRAIC COMBINATORICS, 2023, 6 (03):
  • [38] Refined dual Grothendieck polynomials, integrability, and the Schur measureRefined dual Grothendieck polynomials, integrability...K. Motegi, T. Scrimshaw
    Kohei Motegi
    Travis Scrimshaw
    Selecta Mathematica, 2025, 31 (3)
  • [39] Free-fermions and skew stable Grothendieck polynomials
    Iwao, Shinsuke
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (02) : 493 - 526
  • [40] Lattice polytopes from Schur and symmetric Grothendieck polynomials
    Bayer, Margaret
    Goeckner, Bennet
    Hong, Su Ji
    McAllister, Tyrrell
    Olsen, McCabe
    Pinckney, Casey
    Vega, Julianne
    Yip, Martha
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):