In this paper, we study Grothendieck polynomials indexed by Grassmannian permutations from a combinatorial viewpoint. We introduce the factorial Grothendieck polynomials which are analogues of the factorial Schur functions, study their properties, and use them to produce a generalisation of a Littlewood-Richardson rule for Grothendieck polynomials.
机构:
Department of Mathematics and Statistics, University of Massachusetts, Amherst, 01003, MADepartment of Mathematics and Statistics, University of Massachusetts, Amherst, 01003, MA
Morales A.H.
Pak I.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, University of California, Los Angeles, 90095, CADepartment of Mathematics and Statistics, University of Massachusetts, Amherst, 01003, MA
Pak I.
Panova G.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, University of Southern California, Los Angeles, 90089, CADepartment of Mathematics and Statistics, University of Massachusetts, Amherst, 01003, MA
机构:
Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USAUniv Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
Pechenik, Oliver
Searles, Dominic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Dept Math, 3620 S Vermont Ave KAP 104, Los Angeles, CA 90089 USAUniv Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
机构:
Tokyo Univ Marine Sci & Technol, Fac Marine Technol, Koto Ku, Etchujima 2-1-6, Tokyo 1358533, JapanTokyo Univ Marine Sci & Technol, Fac Marine Technol, Koto Ku, Etchujima 2-1-6, Tokyo 1358533, Japan