Proof of a conjectured Mobius inversion formula for Grothendieck polynomials

被引:0
|
作者
Pechenik, Oliver [1 ]
Satriano, Matthew [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
来源
SELECTA MATHEMATICA-NEW SERIES | 2024年 / 30卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
Schubert polynomial; Grothendieck polynomial; Mobius inversion;
D O I
10.1007/s00029-024-00973-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Schubert polynomials G(w) are polynomial representatives for cohomology classes of Schubert varieties in a complete flag variety, while Grothendieck polynomials G(w) are analogous representatives for the K-theory classes of the structure sheaves of Schubert varieties. In the special case that G(w) is a multiplicity-free sum of monomials, K. Meszaros, L. Setiabrata, and A. St. Dizier conjectured that G(w) can be easily computed from G(w) via Mobius inversion on a certain poset. We prove this conjecture. Our approach is to realize monomials as Chow classes on a product of projective spaces and invoke a result of M. Brion on flat degenerations of such classes.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] AN ORTHODONTIA FORMULA FOR GROTHENDIECK POLYNOMIALS
    Meszaros, Karola
    Setiabrata, Linus
    St Dizier, Avery
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (02) : 1281 - 1303
  • [2] The Mobius inversion formula for Fourier series applied to Bernoulli and Euler polynomials
    Navas, Luis M.
    Ruiz, Francisco J.
    Varona, Juan L.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2011, 163 (01) : 22 - 40
  • [4] GENERALIZED MOBIUS INVERSION FORMULA
    LEWIS, DC
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (04): : 558 - &
  • [5] Mobius inversion formula for the trace group
    Bouillard, A
    Mairesse, J
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (12) : 899 - 904
  • [6] Mobius inversion formula for monoids with zero
    Poinsot, Laurent
    Duchamp, Gerard H. E.
    Tollu, Christophe
    [J]. SEMIGROUP FORUM, 2010, 81 (03) : 446 - 460
  • [7] An algebraic proof of determinant formulas of Grothendieck polynomials
    Matsumura, Tomoo
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2017, 93 (08) : 82 - 85
  • [8] INTERVAL STRUCTURE OF THE PIERI FORMULA FOR GROTHENDIECK POLYNOMIALS
    Pons, Viviane
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (01) : 123 - 146
  • [9] Combinatorial proof of the inversion formula on the Kazhdan-Lusztig R-polynomials
    Chen, William Y. C.
    Fan, Neil J. Y.
    Guo, Alan J. X.
    Guo, Peter L.
    Huang, Harry H. Y.
    Zhong, Michael X. X.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2014, 277 (3-4) : 1017 - 1025
  • [10] A COMBINATORIAL METHOD TO INTRODUCE MOBIUS-INVERSION FORMULA AND MOBIUS FUNCTION
    CHEN, NX
    [J]. CHINESE SCIENCE BULLETIN, 1993, 38 (01): : 27 - 31