Double Grothendieck polynomials for symplectic and odd orthogonal Grassmannians

被引:3
|
作者
Hudson, Thomas [1 ]
Ikeda, Takeshi [2 ]
Matsumura, Tomoo [2 ]
Naruse, Hiroshi [3 ]
机构
[1] Berg Univ Wuppertal, Fachgrp Math & Informat, D-42119 Wuppertal, Germany
[2] Okayama Univ Sci, Dept Appl Math, Okayama 7000005, Japan
[3] Univ Yamanashi, Grad Sch Educ, Kofu, Yamanashi 4008510, Japan
基金
新加坡国家研究基金会;
关键词
Equivariant K-theory; Isotropic Grassmannians; Schubert class; Pfaffian; EQUIVARIANT COBORDISM; SCHUBERT POLYNOMIALS; K-THEORY; GIAMBELLI; FORMULAS;
D O I
10.1016/j.jalgebra.2019.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the double Grothendieck polynomials of Kirillov-Naruse for the symplectic and odd orthogonal Grassmannians. These functions are explicitly written as Pfaffian sum form and are identified with the stable limits of fundamental classes of the Schubert varieties in torus equivariant connective K-theory of these isotropic Grassmannians. We also provide a combinatorial description of the ring formally spanned be the double Grothendieck polynomials. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:294 / 314
页数:21
相关论文
共 50 条