On some properties of symplectic Grothendieck polynomials

被引:5
|
作者
Marberg, Eric [1 ]
Pawlowski, Brendan [2 ]
机构
[1] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[2] Univ Southern Calif, Los Angeles, CA 90089 USA
关键词
K-THEORY;
D O I
10.1016/j.jpaa.2020.106463
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Grothendieck polynomials, introduced by Lascoux and Schutzenberger, are certain K-theory representatives for Schubert varieties. Symplectic Grothendieck polynomials, described more recently by Wyser and Yong, represent the K-theory classes of orbit closures for the complex symplectic group acting on the complete flag variety. We prove a transition formula for symplectic Grothendieck polynomials and study their stable limits. We show that each of the K-theoretic Schur P-functions of Ikeda and Naruse arises from a limiting procedure applied to symplectic Grothendieck polynomials representing certain "Grassmannian" orbit closures. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Double Grothendieck polynomials for symplectic and odd orthogonal Grassmannians
    Hudson, Thomas
    Ikeda, Takeshi
    Matsumura, Tomoo
    Naruse, Hiroshi
    [J]. JOURNAL OF ALGEBRA, 2020, 546 : 294 - 314
  • [2] Symplectic Grothendieck polynomials, universal characters and integrable systems
    Huang, Fang
    Li, Chuanzhong
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2024, 461
  • [3] Flagged Grothendieck polynomials
    Matsumura, Tomoo
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 49 (03) : 209 - 228
  • [4] Flagged Grothendieck polynomials
    Tomoo Matsumura
    [J]. Journal of Algebraic Combinatorics, 2019, 49 : 209 - 228
  • [5] Specializations of grothendieck polynomials
    Buch, AS
    Rimányi, R
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (01) : 1 - 4
  • [6] On the Support of Grothendieck Polynomials
    Meszaros, Karola
    Setiabrata, Linus
    Dizier, Avery St.
    [J]. ANNALS OF COMBINATORICS, 2024,
  • [7] Decompositions of Grothendieck Polynomials
    Pechenik, Oliver
    Searles, Dominic
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (10) : 3214 - 3241
  • [8] Transition on Grothendieck polynomials
    Lascoux, A
    [J]. PHYSICS AND COMBINATORICS, 2001, : 164 - 179
  • [9] Factorial Grothendieck polynomials
    McNamara, Peter J.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [10] Identities on factorial Grothendieck polynomials
    Guo, Peter L.
    Sun, Sophie C. C.
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2019, 111