Double Grothendieck polynomials for symplectic and odd orthogonal Grassmannians

被引:5
|
作者
Hudson, Thomas [1 ]
Ikeda, Takeshi [2 ]
Matsumura, Tomoo [2 ]
Naruse, Hiroshi [3 ]
机构
[1] Berg Univ Wuppertal, Fachgrp Math & Informat, D-42119 Wuppertal, Germany
[2] Okayama Univ Sci, Dept Appl Math, Okayama 7000005, Japan
[3] Univ Yamanashi, Grad Sch Educ, Kofu, Yamanashi 4008510, Japan
基金
新加坡国家研究基金会;
关键词
Equivariant K-theory; Isotropic Grassmannians; Schubert class; Pfaffian; EQUIVARIANT COBORDISM; SCHUBERT POLYNOMIALS; K-THEORY; GIAMBELLI; FORMULAS;
D O I
10.1016/j.jalgebra.2019.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the double Grothendieck polynomials of Kirillov-Naruse for the symplectic and odd orthogonal Grassmannians. These functions are explicitly written as Pfaffian sum form and are identified with the stable limits of fundamental classes of the Schubert varieties in torus equivariant connective K-theory of these isotropic Grassmannians. We also provide a combinatorial description of the ring formally spanned be the double Grothendieck polynomials. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:294 / 314
页数:21
相关论文
共 50 条
  • [11] Symplectic subspaces of symplectic Grassmannians
    Cooperstein, B. N.
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (05) : 1442 - 1454
  • [12] Generic stabilizers for simple algebraic groups acting on orthogonal and symplectic Grassmannians
    Rizzoli, Aluna
    FORUM OF MATHEMATICS SIGMA, 2025, 13
  • [13] Constructing Maximal Pipedreams of Double Grothendieck Polynomials
    Chou, Chen-An
    Yu, Tianyi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (03):
  • [14] Double Grothendieck Polynomials and Colored Lattice Models
    Buciumas, Valentin
    Scrimshaw, Travis
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (10) : 7231 - 7258
  • [15] SYMPLECTIC AND ODD ORTHOGONAL PFAFFIAN FORMULAS FOR ALGEBRAIC COBORDISM
    Hudson, Thomas
    Matsumura, Tomoo
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 302 (01) : 97 - 118
  • [16] A characterization of symplectic Grassmannians
    Occhetta, Gianluca
    Conde, Luis E. Sola
    Watanabe, Kiwamu
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (3-4) : 1421 - 1433
  • [17] Grassmannians of symplectic subspaces
    Jae-Hyouk Lee
    Naichung Conan Leung
    Manuscripta Mathematica, 2011, 136 : 383 - 410
  • [18] Laurent skew orthogonal polynomials and related symplectic matrices
    Miki, Hiroshi
    JOURNAL OF APPROXIMATION THEORY, 2020, 259
  • [19] Grassmannians of symplectic subspaces
    Lee, Jae-Hyouk
    Leung, Naichung Conan
    MANUSCRIPTA MATHEMATICA, 2011, 136 (3-4) : 383 - 410
  • [20] A characterization of symplectic Grassmannians
    Gianluca Occhetta
    Luis E. Solá Conde
    Kiwamu Watanabe
    Mathematische Zeitschrift, 2017, 286 : 1421 - 1433