INTEGRAL HOMOLOGY OF REAL ISOTROPIC AND ODD ORTHOGONAL GRASSMANNIANS

被引:0
|
作者
Lambert, Jordan [1 ]
Rabelo, Lonardo [2 ]
机构
[1] Univ Fed Fluminense, Dept Math ICEx, BR-27213145 Volta Redonda, RJ, Brazil
[2] Univ Fed Juiz de Fora, Dept Math, BR-36036900 Juiz De Fora, MG, Brazil
关键词
EXCITED YOUNG-DIAGRAMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a combinatorial expression for the boundary map coefficients of real isotropic and odd orthogonal Grassmannians. It provides a natural generalization of the known formulas for Lagrangian and maximal isotropic Grassmannians. The results derive from the classification of Schubert cells into four types of covering pairs when identified with signed k-Grassmannian permutations. Our formulas show that the coefficients depend on the changed positions for each permutation pair type. We apply this to obtain an orientability criterion and compute the first and second homology groups for these Grassmannians. Furthermore, we exhibit an apparent symmetry of the boundary map coefficients.
引用
收藏
页码:853 / 880
页数:28
相关论文
共 50 条
  • [1] Cellular homology of real maximal isotropic Grassmannians
    Rabelo, Lonardo
    [J]. ADVANCES IN GEOMETRY, 2016, 16 (03) : 361 - 379
  • [2] Double Grothendieck polynomials for symplectic and odd orthogonal Grassmannians
    Hudson, Thomas
    Ikeda, Takeshi
    Matsumura, Tomoo
    Naruse, Hiroshi
    [J]. JOURNAL OF ALGEBRA, 2020, 546 : 294 - 314
  • [3] A Pieri-type theorem for Lagrangian and odd orthogonal Grassmannians
    Pragacz, P
    Ratajski, J
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1996, 476 : 143 - 189
  • [4] INTEGRAL MORSE COMPLEXES ON THE REAL GRASSMANNIANS
    Ozawa, Tetsuya
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2024, 61 (02) : 147 - 162
  • [5] Wahl's conjecture holds in odd characteristics for symplectic and orthogonal Grassmannians
    Lakshmibai, Venkatramani
    Raghavan, Komaranapuram N.
    Sankaran, Parameswaran
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (02): : 214 - 223
  • [6] HOMOLOGY RIGIDITY OF GRASSMANNIANS
    李方
    段海豹
    [J]. Acta Mathematica Scientia, 2009, 29 (03) : 697 - 704
  • [7] HOMOLOGY RIGIDITY OF GRASSMANNIANS
    Li Fang
    Duan Haibao
    [J]. ACTA MATHEMATICA SCIENTIA, 2009, 29 (03) : 697 - 704
  • [8] Incompressibility of orthogonal grassmannians
    Karpenko, Nikita A.
    [J]. COMPTES RENDUS MATHEMATIQUE, 2011, 349 (21-22) : 1131 - 1134
  • [9] Maximal isotropic subbundles of orthogonal bundles of odd rank over a curve
    Choe, Insong
    Hitching, George H.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (13)
  • [10] Isotropic and coisotropic subvarieties of Grassmannians
    Kohn, Kathlen
    Mathews, James C.
    [J]. ADVANCES IN MATHEMATICS, 2021, 377