Isotropic and coisotropic subvarieties of Grassmannians

被引:1
|
作者
Kohn, Kathlen [1 ,3 ]
Mathews, James C. [2 ,4 ]
机构
[1] Tech Univ Berlin, Inst Math, Sekretariat MA 3-2,Str 17 Juni 136, D-10623 Berlin, Germany
[2] Mem Sloan Kettering Canc Ctr, Dept Med Phys, 485 Lexington Ave Fl2, New York, NY 10017 USA
[3] KTH Royal Inst Technol, Dept Math, Lindstedtsvagen 25, S-10044 Stockholm, Sweden
[4] Allen Inst Brain Sci, Dept Data & Technol, 615 Westlake Ave N, Seattle, WA 98109 USA
关键词
Chow form; Coisotropic hypersurface; Projective duality; Non-transversal intersection; Osculating spaces; SECANT; FORMS; LOCUS;
D O I
10.1016/j.aim.2020.107492
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the notion of coisotropic hypersurfaces to sub-varieties of Grassmannians having arbitrary codimension. To every projective variety X, Gel'fand, Kapranov and Zelevinsky associate a series of coisotropic hypersurfaces in different Grassmannians. These include the Chow form and the Hurwitz form ofX. Gel'fand, Kapranov and Zelevinsky characterized coisotropic hypersurfaces by a rank one condition on conormal spaces, which we use as the starting point for our generalization. We also study the dual notion of isotropic varieties by imposing rank one conditions on tangent spaces instead of conormal spaces. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Coisotropic hypersurfaces in Grassmannians
    Kohn, Kathlen
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2021, 103 : 157 - 177
  • [2] DEFORMATION OF LINE BUNDLES ON COISOTROPIC SUBVARIETIES
    Baranovsky, Vladimir
    Ginzburg, Victor
    Pecharich, Jeremy
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (03): : 525 - 537
  • [3] Coisotropic and polar actions on complex Grassmannians
    Biliotti, L
    Gori, A
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (05) : 1731 - 1751
  • [4] Subvarieties of hypersurface sections of generalized Grassmannians
    Abe, Takeshi
    [J]. COMMUNICATIONS IN ALGEBRA, 2024, 52 (07) : 3027 - 3053
  • [5] SEGRE HYPERBOLOIDS AND RATIONAL SUBVARIETIES IN GRASSMANNIANS
    GAIDIS, YY
    GINDIKIN, SG
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1990, 24 (01) : 59 - 61
  • [6] GRASSMANNIANS AND THEIR SCHUBERT SUBVARIETIES ARE ARITHMETICALLY COHEN-MACAULAY
    HOCHSTER, M
    [J]. JOURNAL OF ALGEBRA, 1973, 25 (01) : 40 - 57
  • [7] WALL DIVISORS AND ALGEBRAICALLY COISOTROPIC SUBVARIETIES OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS
    Knutsen, Andreas Leopold
    Lelli-Chiesa, Margherita
    Mongardi, Giovanni
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (02) : 1403 - 1438
  • [8] A Giambelli formula for isotropic Grassmannians
    Anders Skovsted Buch
    Andrew Kresch
    Harry Tamvakis
    [J]. Selecta Mathematica, 2017, 23 : 869 - 914
  • [9] Exceptional collections on isotropic Grassmannians
    Kuznetsov, Alexander
    Polishchuk, Alexander
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (03) : 507 - 574
  • [10] A Giambelli formula for isotropic Grassmannians
    Buch, Anders Skovsted
    Kresch, Andrew
    Tamvakis, Harry
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (02): : 869 - 914