A Giambelli formula for isotropic Grassmannians

被引:17
|
作者
Buch, Anders Skovsted [1 ]
Kresch, Andrew [2 ]
Tamvakis, Harry [3 ]
机构
[1] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] Univ Maryland, Dept Math, 1301 Math Bldg, College Pk, MD 20742 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2017年 / 23卷 / 02期
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
Giambelli formula; Isotropic Grassmannians; Raising operators; Theta polynomials; Schubert polynomials; SCHUBERT POLYNOMIALS; PIERI;
D O I
10.1007/s00029-016-0250-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a symplectic or odd orthogonal Grassmannian. We prove a Giambelli formula which expresses an arbitrary Schubert class in H* (X, Z) as a polynomial in certain special Schubert classes. This polynomial, which we call a theta polynomial, is defined using raising operators, and we study its image in the ring of Billey-Haiman Schubert polynomials.
引用
收藏
页码:869 / 914
页数:46
相关论文
共 50 条
  • [1] A Giambelli formula for isotropic Grassmannians
    Anders Skovsted Buch
    Andrew Kresch
    Harry Tamvakis
    [J]. Selecta Mathematica, 2017, 23 : 869 - 914
  • [2] Quantum Giambelli formulas for isotropic Grassmannians
    Anders Skovsted Buch
    Andrew Kresch
    Harry Tamvakis
    [J]. Mathematische Annalen, 2012, 354 : 801 - 812
  • [3] Quantum Giambelli formulas for isotropic Grassmannians
    Buch, Anders Skovsted
    Kresch, Andrew
    Tamvakis, Harry
    [J]. MATHEMATISCHE ANNALEN, 2012, 354 (03) : 801 - 812
  • [4] A Giambelli formula for even orthogonal Grassmannians
    Buch, Anders Skovsted
    Kresch, Andrew
    Tamvakis, Harry
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 708 : 17 - 48
  • [5] PIERI TYPE FORMULA FOR ISOTROPIC GRASSMANNIANS, THE OPERATOR APPROACH
    PRAGACZ, P
    RATAJSKI, J
    [J]. MANUSCRIPTA MATHEMATICA, 1993, 79 (02) : 127 - 151
  • [6] A GIAMBELLI FORMULA FOR CLASSICAL G/P SPACES
    Tamvakis, Harry
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2014, 23 (02) : 245 - 278
  • [7] Isotropic and coisotropic subvarieties of Grassmannians
    Kohn, Kathlen
    Mathews, James C.
    [J]. ADVANCES IN MATHEMATICS, 2021, 377
  • [8] Exceptional collections on isotropic Grassmannians
    Kuznetsov, Alexander
    Polishchuk, Alexander
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (03) : 507 - 574
  • [9] Quantum cohomology of isotropic grassmannians
    Tamvakis, H
    [J]. GEOMETRIC METHODS IN ALGEBRA AND NUMBER THEORY, 2005, 235 : 311 - 338
  • [10] ON THE PRODUCT FORMULA ON NONCOMPACT GRASSMANNIANS
    Graczyk, Piotr
    Sawyer, Patrice
    [J]. COLLOQUIUM MATHEMATICUM, 2013, 133 (02) : 145 - 167