Isotropic and coisotropic subvarieties of Grassmannians

被引:1
|
作者
Kohn, Kathlen [1 ,3 ]
Mathews, James C. [2 ,4 ]
机构
[1] Tech Univ Berlin, Inst Math, Sekretariat MA 3-2,Str 17 Juni 136, D-10623 Berlin, Germany
[2] Mem Sloan Kettering Canc Ctr, Dept Med Phys, 485 Lexington Ave Fl2, New York, NY 10017 USA
[3] KTH Royal Inst Technol, Dept Math, Lindstedtsvagen 25, S-10044 Stockholm, Sweden
[4] Allen Inst Brain Sci, Dept Data & Technol, 615 Westlake Ave N, Seattle, WA 98109 USA
关键词
Chow form; Coisotropic hypersurface; Projective duality; Non-transversal intersection; Osculating spaces; SECANT; FORMS; LOCUS;
D O I
10.1016/j.aim.2020.107492
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the notion of coisotropic hypersurfaces to sub-varieties of Grassmannians having arbitrary codimension. To every projective variety X, Gel'fand, Kapranov and Zelevinsky associate a series of coisotropic hypersurfaces in different Grassmannians. These include the Chow form and the Hurwitz form ofX. Gel'fand, Kapranov and Zelevinsky characterized coisotropic hypersurfaces by a rank one condition on conormal spaces, which we use as the starting point for our generalization. We also study the dual notion of isotropic varieties by imposing rank one conditions on tangent spaces instead of conormal spaces. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条