Investigation of Floquet engineered non-Abelian geometric phase for holonomic quantum computing

被引:2
|
作者
Cooke, Logan W. [1 ]
Tashchilina, Arina [1 ]
Protter, Mason [1 ]
Lindon, Joseph [1 ]
Ooi, Tian [1 ]
Marsiglio, Frank [1 ,2 ]
Maciejko, Joseph [1 ,2 ]
Leblanc, Lindsay J. [1 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB, Canada
[2] Univ Alberta, Theoret Phys Inst, Edmonton, AB, Canada
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 01期
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
EXPERIMENTAL REALIZATION; GAUGE STRUCTURE; GATES;
D O I
10.1103/PhysRevResearch.6.013057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Holonomic quantum computing functions by transporting an adiabatically degenerate manifold of computational states around a closed loop in a control-parameter space; this cyclic evolution results in a non-Abelian geometric phase which may couple states within the manifold. Realizing the required degeneracy is challenging and typically requires auxiliary levels or intermediate-level couplings. One potential way to circumvent this is through Floquet engineering, where the periodic driving of a nondegenerate Hamiltonian leads to degenerate Floquet bands, and subsequently non-Abelian gauge structures may emerge. Here we present an experiment in ultracold 87Rb atoms where atomic spin states are dressed by modulated RF fields to induce periodic driving of a family of Hamiltonians linked through a fully tuneable parameter space. The adiabatic motion through this parameter space leads to the holonomic evolution of the degenerate spin states in SU (2), characterized by a non-Abelian connection. We study the holonomic transformations of spin eigenstates in the presence of a background magnetic field, characterizing the fidelity of these single-qubit gate operations. Results indicate that while the Floquet engineering technique removes the need for explicit degeneracies, it inherits many of the same limitations present in degenerate systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Non-Abelian Floquet braiding and anomalous Dirac string phase in periodically driven systems
    Slager, Robert-Jan
    Bouhon, Adrien
    Unal, F. Nur
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [32] DEPENDENCE OF NON-ABELIAN MATRIX BERRY PHASE OF A SEMICONDUCTOR QUANTUM DOT ON GEOMETRIC PROPERTIES OF ADIABATIC PATH
    Kim, S. C.
    Hwang, N. Y.
    Park, P. S.
    Kim, Y. J.
    Lee, C. J.
    Yang, S. -R Eric
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (25-26): : 4471 - 4481
  • [33] Non-Abelian geometric phase in the diamond nitrogen-vacancy center
    Kowarsky, Mark A.
    Hollenberg, Lloyd C. L.
    Martin, Andrew M.
    PHYSICAL REVIEW A, 2014, 90 (04):
  • [34] Thomas rotation and polarized light: A non-abelian geometric phase in optics
    Joseph Samuel
    Supurna Sinha
    Pramana, 1997, 48 : 969 - 975
  • [35] Thomas rotation and polarized light: A non-abelian geometric phase in optics
    Samuel, J
    Sinha, S
    PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (05): : 969 - 975
  • [36] NON-ABELIAN GEOMETRIC PHASE AND LONG-RANGE ATOMIC FORCES
    ZYGELMAN, B
    PHYSICAL REVIEW LETTERS, 1990, 64 (03) : 256 - 259
  • [37] Entanglement gauge and the non-Abelian geometric phase with two photonic qubits
    Marzlin, KP
    Bartlett, SD
    Sanders, BC
    PHYSICAL REVIEW A, 2003, 67 (02):
  • [38] DEPENDENCE OF NON-ABELIAN MATRIX BERRY PHASE OF A SEMICONDUCTOR QUANTUM DOT ON GEOMETRIC PROPERTIES OF ADIABATIC PATH
    Kim, S. C.
    Hwang, N. Y.
    Park, P. S.
    Kim, Y. J.
    Lee, C. J.
    Yang, S. R. Eric
    CONDENSED MATTER THEORIES, VOL 23, 2009, : 183 - 193
  • [39] NON-ABELIAN BERRY PHASE IN A QUANTUM-MECHANICAL ENVIRONMENT
    ALDINGER, RR
    BOHM, A
    LOEWE, M
    FOUNDATIONS OF PHYSICS LETTERS, 1991, 4 (03) : 217 - 234
  • [40] Non-Abelian Floquet Spin Liquids in a Digital Rydberg Simulator
    Kalinowski, Marcin
    Maskara, Nishad
    Lukin, Mikhail D.
    PHYSICAL REVIEW X, 2023, 13 (03)