Investigation of Floquet engineered non-Abelian geometric phase for holonomic quantum computing

被引:2
|
作者
Cooke, Logan W. [1 ]
Tashchilina, Arina [1 ]
Protter, Mason [1 ]
Lindon, Joseph [1 ]
Ooi, Tian [1 ]
Marsiglio, Frank [1 ,2 ]
Maciejko, Joseph [1 ,2 ]
Leblanc, Lindsay J. [1 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB, Canada
[2] Univ Alberta, Theoret Phys Inst, Edmonton, AB, Canada
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 01期
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
EXPERIMENTAL REALIZATION; GAUGE STRUCTURE; GATES;
D O I
10.1103/PhysRevResearch.6.013057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Holonomic quantum computing functions by transporting an adiabatically degenerate manifold of computational states around a closed loop in a control-parameter space; this cyclic evolution results in a non-Abelian geometric phase which may couple states within the manifold. Realizing the required degeneracy is challenging and typically requires auxiliary levels or intermediate-level couplings. One potential way to circumvent this is through Floquet engineering, where the periodic driving of a nondegenerate Hamiltonian leads to degenerate Floquet bands, and subsequently non-Abelian gauge structures may emerge. Here we present an experiment in ultracold 87Rb atoms where atomic spin states are dressed by modulated RF fields to induce periodic driving of a family of Hamiltonians linked through a fully tuneable parameter space. The adiabatic motion through this parameter space leads to the holonomic evolution of the degenerate spin states in SU (2), characterized by a non-Abelian connection. We study the holonomic transformations of spin eigenstates in the presence of a background magnetic field, characterizing the fidelity of these single-qubit gate operations. Results indicate that while the Floquet engineering technique removes the need for explicit degeneracies, it inherits many of the same limitations present in degenerate systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Optimal Design Strategy of Non-Abelian Geometric Phases based on Quantum Metric
    Kremer, Mark
    Teuber, Lucas
    Szameit, Alexander
    Scheel, Stefan
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [42] Geometric phases and quantum entanglement as building blocks for non-Abelian quasiparticle statistics
    Stern, A
    von Oppen, F
    Mariani, E
    PHYSICAL REVIEW B, 2004, 70 (20): : 205338 - 1
  • [43] NON-ABELIAN PHASE SPACES
    KUPERSHMIDT, BA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (08): : 2801 - 2809
  • [44] The non-Abelian bosonic quantum ring
    M. Merkl
    G. Juzeliūnas
    P. Öhberg
    The European Physical Journal D, 2010, 59 : 257 - 267
  • [45] Robustness of non-Abelian holonomic quantum gates against parametric noise -: art. no. 042316
    Solinas, P
    Zanardi, P
    Zanghì, N
    PHYSICAL REVIEW A, 2004, 70 (04) : 042316 - 1
  • [46] The non-Abelian bosonic quantum ring
    Merkl, M.
    Juzeliunas, G.
    Oehberg, P.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 59 (02): : 257 - 267
  • [47] Quantum Walks with Non-Abelian Anyons
    Lehman, Lauri
    Zatloukal, Vaclav
    Brennen, Gavin K.
    Pachos, Jiannis K.
    Wang, Zhenghan
    PHYSICAL REVIEW LETTERS, 2011, 106 (23)
  • [48] Non-Abelian Statistics in a Quantum Antiferromagnet
    Greiter, Martin
    Thomale, Ronny
    PHYSICAL REVIEW LETTERS, 2009, 102 (20)
  • [49] Non-abelian Quantum Statistics on Graphs
    Maciazek, Tomasz
    Sawicki, Adam
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (03) : 921 - 973
  • [50] Quantum invariant theory and non-adiabatic non-Abelian phase factor
    Fu, J
    Li, XH
    Gao, XC
    Gao, J
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 31 (01) : 135 - 140