Investigation of Floquet engineered non-Abelian geometric phase for holonomic quantum computing

被引:2
|
作者
Cooke, Logan W. [1 ]
Tashchilina, Arina [1 ]
Protter, Mason [1 ]
Lindon, Joseph [1 ]
Ooi, Tian [1 ]
Marsiglio, Frank [1 ,2 ]
Maciejko, Joseph [1 ,2 ]
Leblanc, Lindsay J. [1 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB, Canada
[2] Univ Alberta, Theoret Phys Inst, Edmonton, AB, Canada
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 01期
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
EXPERIMENTAL REALIZATION; GAUGE STRUCTURE; GATES;
D O I
10.1103/PhysRevResearch.6.013057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Holonomic quantum computing functions by transporting an adiabatically degenerate manifold of computational states around a closed loop in a control-parameter space; this cyclic evolution results in a non-Abelian geometric phase which may couple states within the manifold. Realizing the required degeneracy is challenging and typically requires auxiliary levels or intermediate-level couplings. One potential way to circumvent this is through Floquet engineering, where the periodic driving of a nondegenerate Hamiltonian leads to degenerate Floquet bands, and subsequently non-Abelian gauge structures may emerge. Here we present an experiment in ultracold 87Rb atoms where atomic spin states are dressed by modulated RF fields to induce periodic driving of a family of Hamiltonians linked through a fully tuneable parameter space. The adiabatic motion through this parameter space leads to the holonomic evolution of the degenerate spin states in SU (2), characterized by a non-Abelian connection. We study the holonomic transformations of spin eigenstates in the presence of a background magnetic field, characterizing the fidelity of these single-qubit gate operations. Results indicate that while the Floquet engineering technique removes the need for explicit degeneracies, it inherits many of the same limitations present in degenerate systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Non-Abelian geometric phases in a system of coupled quantum bits
    Mousolou, Vahid Azimi
    Sjoqvist, Erik
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [22] Exact Abelian and Non-Abelian Geometric Phases
    Soo, Chopin
    Lin, Huei-Chen
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 85 - 101
  • [23] Non-Abelian geometric phase in four-waveguide arrays
    Weng, Bao-Long
    Lai, Dong-Mei
    Zhang, Xin-Ding
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [24] Non-Abelian holonomic transformation in the presence of classical noise
    Jing, Jun
    Lam, Chi-Hang
    Wu, Lian-Ao
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [25] Non-Abelian Berry phase for open quantum systems: Topological protection versus geometric dephasing
    Snizhko, Kyrylo
    Egger, Reinhold
    Gefen, Yuval
    PHYSICAL REVIEW B, 2019, 100 (08)
  • [26] Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits
    Zheng, Wen
    Xu, Jianwen
    Ma, Zhuang
    Li, Yong
    Dong, Yuqian
    Zhang, Yu
    Wang, Xiaohan
    Sun, Guozhu
    Wu, Peiheng
    Zhao, Jie
    Li, Shaoxiong
    Lan, Dong
    Tan, Xinsheng
    Yu, Yang
    CHINESE PHYSICS LETTERS, 2022, 39 (10)
  • [27] Fast non-Abelian geometric gates via transitionless quantum driving
    J. Zhang
    Thi Ha Kyaw
    D. M. Tong
    Erik Sjöqvist
    Leong-Chuan Kwek
    Scientific Reports, 5
  • [28] Fast non-Abelian geometric gates via transitionless quantum driving
    Zhang, J.
    Kyaw, Thi Ha
    Tong, D. M.
    Sjoqvist, Erik
    Kwek, Leong-Chuan
    SCIENTIFIC REPORTS, 2015, 5
  • [29] Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits
    郑文
    徐建文
    马壮
    李勇
    董煜倩
    张煜
    王晓晗
    孙国柱
    吴培亨
    赵杰
    李邵雄
    兰栋
    谭新生
    于扬
    Chinese Physics Letters, 2022, 39 (10) : 12 - 28
  • [30] Non-Abelian Floquet braiding and anomalous Dirac string phase in periodically driven systems
    Robert-Jan Slager
    Adrien Bouhon
    F. Nur Ünal
    Nature Communications, 15