Entanglement gauge and the non-Abelian geometric phase with two photonic qubits

被引:7
|
作者
Marzlin, KP [1 ]
Bartlett, SD
Sanders, BC
机构
[1] Macquarie Univ, Dept Phys, Sydney, NSW 2109, Australia
[2] Macquarie Univ, Ctr Adv Comp Algorithms & Cryptog, Sydney, NSW 2109, Australia
[3] Univ Konstanz, Fachbereich Phys, D-78457 Constance, Germany
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 02期
关键词
D O I
10.1103/PhysRevA.67.022316
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce the entanglement gauge describing the combined effects of local operations and nonlocal unitary transformations on bipartite quantum systems. The entanglement gauge exploits the invariance of nonlocal properties for bipartite systems under local (gauge) transformations. This new formalism yields observable effects arising from the gauge geometry of the bipartite system. In particular, we propose a non-Abelian gauge theory realized via two separated spatial modes of the quantized electromagnetic field manipulated by linear optics. In this linear optical realization, a bipartite state of two separated spatial modes can acquire a non-Abelian geometric phase.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Entanglement entropy in lattices with non-Abelian gauge groups
    Hategan-Marandiuc, M.
    [J]. PHYSICAL REVIEW D, 2024, 109 (09)
  • [2] Non-Abelian Gauge Fields in Photonic Cavities and Photonic Superfluids
    Tercas, H.
    Flayac, H.
    Solnyshkov, D. D.
    Malpuech, G.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (06)
  • [3] NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE
    ANANDAN, J
    [J]. PHYSICS LETTERS A, 1988, 133 (4-5) : 171 - 175
  • [4] SYMPLECTIC STRUCTURE FOR THE NON-ABELIAN GEOMETRIC PHASE
    CHRUSCINSKI, D
    [J]. PHYSICS LETTERS A, 1994, 186 (1-2) : 1 - 4
  • [5] Non-abelian Gauge Symmetry for Fields in Phase Space: a Realization of the Seiberg-Witten Non-abelian Gauge Theory
    Cruz-Filho, J. S.
    Amorim, R. G. G.
    Khanna, F. C.
    Santana, A. E.
    Santos, A. F.
    Ulhoa, S. C.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (10) : 3203 - 3224
  • [6] HOW NON-ABELIAN IS NON-ABELIAN GAUGE-THEORY
    CRABB, MC
    SUTHERLAND, WA
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (183): : 279 - 290
  • [7] Non-abelian Gauge Symmetry for Fields in Phase Space: a Realization of the Seiberg-Witten Non-abelian Gauge Theory
    J. S. Cruz-Filho
    R. G. G. Amorim
    F. C. Khanna
    A. E. Santana
    A. F. Santos
    S. C. Ulhoa
    [J]. International Journal of Theoretical Physics, 2019, 58 : 3203 - 3224
  • [8] THE LAYER PHASE IN THE NONISOTROPIC ABELIAN AND NON-ABELIAN GAUGE-MODEL
    FU, YK
    HUANG, LX
    ZHANG, DX
    [J]. PHYSICS LETTERS B, 1994, 335 (01) : 65 - 70
  • [9] The Berry phase and monopoles in non-abelian gauge theories
    Gubarev, FV
    Zakharov, VI
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (02): : 157 - 174
  • [10] Gauge transformations of the non-Abelian two-form
    Lahiri, A
    [J]. MODERN PHYSICS LETTERS A, 2002, 17 (25) : 1643 - 1650