Entanglement gauge and the non-Abelian geometric phase with two photonic qubits

被引:7
|
作者
Marzlin, KP [1 ]
Bartlett, SD
Sanders, BC
机构
[1] Macquarie Univ, Dept Phys, Sydney, NSW 2109, Australia
[2] Macquarie Univ, Ctr Adv Comp Algorithms & Cryptog, Sydney, NSW 2109, Australia
[3] Univ Konstanz, Fachbereich Phys, D-78457 Constance, Germany
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 02期
关键词
D O I
10.1103/PhysRevA.67.022316
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce the entanglement gauge describing the combined effects of local operations and nonlocal unitary transformations on bipartite quantum systems. The entanglement gauge exploits the invariance of nonlocal properties for bipartite systems under local (gauge) transformations. This new formalism yields observable effects arising from the gauge geometry of the bipartite system. In particular, we propose a non-Abelian gauge theory realized via two separated spatial modes of the quantized electromagnetic field manipulated by linear optics. In this linear optical realization, a bipartite state of two separated spatial modes can acquire a non-Abelian geometric phase.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] PHASE FACTORS AND POINT SPLITTING FOR NON-ABELIAN GAUGE THEORIES
    LIGGATT, PAJ
    MACFARLANE, AJ
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1978, 4 (05) : 663 - 645
  • [32] Entanglement spectrum of non-Abelian anyons
    Wu, Ying-Hai
    [J]. CHINESE PHYSICS B, 2022, 31 (03)
  • [33] Note on non-Abelian two-form gauge fields
    Ho, Pei-Ming
    Matsuo, Yutaka
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (09):
  • [34] Topological Entanglement in Abelian and Non-Abelian Excitation Eigenstates
    Papic, Z.
    Bernevig, B. A.
    Regnault, N.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (05)
  • [35] NON-ABELIAN GEOMETRIC PHASE FROM INCOMPLETE QUANTUM MEASUREMENTS
    ANANDAN, J
    PINES, A
    [J]. PHYSICS LETTERS A, 1989, 141 (07) : 335 - 339
  • [36] WEYL NON-ABELIAN GAUGE FIELD
    BARBASHOV, BM
    PESTOV, AB
    [J]. MODERN PHYSICS LETTERS A, 1995, 10 (03) : 193 - 197
  • [37] Weyl Non-Abelian Gauge Field
    Barbashov, B. M.
    Pestov, A. B.
    [J]. Current Science, 1994, 67
  • [38] Non-Abelian geometric phase in four-waveguide arrays
    Weng, Bao-Long
    Lai, Dong-Mei
    Zhang, Xin-Ding
    [J]. PHYSICAL REVIEW A, 2012, 85 (05):
  • [39] Non-Abelian gauge theories, prepotentials, and Abelian differentials
    A. V. Marshakov
    [J]. Theoretical and Mathematical Physics, 2009, 159 : 598 - 617
  • [40] RENORMALIZATION IN NON-ABELIAN GAUGE THEORIES
    KALLOSH, R
    [J]. NUCLEAR PHYSICS B, 1974, B 78 (02) : 293 - 312